Chemical: Drug
acenocoumarol

Available Guidelines

  1. DPWG Guideline for acenocoumarol and CYP2C9
  2. DPWG Guideline for acenocoumarol and VKORC1

last updated 02/07/2014

1. DPWG Guideline for acenocoumarol and CYP2C9

Summary

Check INR more frequently after initiating or discontinuing NSAIDs in individuals taking acenocoumarol with at least one CYP2C9 *2 or *3 allele.

Annotation

The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group has evaluated therapeutic dose recommendations for acenocoumarol based on CYP2C9 genotype [Article:21412232].

GenotypeTherapeutic Dose RecommendationLevel of EvidenceClinical Relevance
CYP2C9 *1/*2Check INR more frequently after initiating or discontinuing NSAIDsPublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms females, <470 ms males); INR increase <4.5. Kinetic effect (S)
CYP2C9 *2/*2Check INR more frequently after initiating or discontinuing NSAIDsPublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms females, <470 ms males); INR increase <4.5. Kinetic effect (S)
CYP2C9 *1/*3Check INR more frequently after initiating or discontinuing NSAIDsPublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Clinical effect (S): short-lived discomfort (< 48 hr) without permanent injury: e.g. reduced decrease in resting heart rate; reduction in exercise tachycardia; decreased pain relief from oxycodone; ADE resulting from increased bioavailability of atomoxetine (decreased appetite, insomnia, sleep disturbance etc); neutropenia > 1.5x109/l; leucopenia > 3.0x109/l; thrombocytopenia > 75x109/l; moderate diarrhea not affecting daily activities; reduced glucose increase following oral glucose tolerance test.
CYP2C9 *2/*3Check INR more frequently after initiating or discontinuing NSAIDsPublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms females, <470 ms males); INR increase <4.5. Kinetic effect (S)
CYP2C9 *3/*3Check INR more frequently during dose titration and after initiating or discontinuing NSAIDsPublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms females, <470 ms males); INR increase <4.5. Kinetic effect (S)
  • *See Methods or [Article:18253145] for definition of "good quality."
  • S: statistically significant difference.
  • Please see attached PDF for detailed information about the evaluated studies: Acenocoumarol CYP2C9

last updated 02/07/2014

2. DPWG Guideline for acenocoumarol and VKORC1

Summary

While VKORC1 genotype has been found to contribute to acenocoumarol dose variability, there are no dosing recommendations at this time. Check INR more frequently in patients with the AA genotype at rs9934438.

Annotation

The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group has evaluated therapeutic dose recommendations for acenocoumarol based on VKORC1 genotype [Article:21412232]. They found that VKORC1 genotype contributes to dose variability. However, they make no dosing recommendations at this time "because of strict international normalized ratio monitoring by the Dutch Thrombosis Service."

GenotypeTherapeutic Dose RecommendationLevel of EvidenceClinical Relevance
VKORC1 rs9934438 AGNonePublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms , <470 ms ); INR increase < 4.5; Kinetic effect (S).
VKORC1 rs9934438 AACheck INR more frequently.Published controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Minor clinical effect (S): QTc prolongation (<450 ms , <470 ms ); INR increase < 4.5; Kinetic effect (S).

PharmGKB has no annotated drug labels with pharmacogenomic information for this . If you know of a drug label with PGx, send us a message.

Clinical Variants that meet the highest level of criteria, manually curated by PharmGKB, are shown below.

To see more Clinical Variants with lower levels of criteria, click the button at the bottom of the page.

Disclaimer: The PharmGKB's clinical annotations reflect expert consensus based on clinical evidence and peer-reviewed literature available at the time they are written and are intended only to assist clinicians in decision-making and to identify questions for further research. New evidence may have emerged since the time an annotation was submitted to the PharmGKB. The annotations are limited in scope and are not applicable to interventions or diseases that are not specifically identified.

The annotations do not account for individual variations among patients, and cannot be considered inclusive of all proper methods of care or exclusive of other treatments. It remains the responsibility of the health-care provider to determine the best course of treatment for a patient. Adherence to any guideline is voluntary, with the ultimate determination regarding its application to be made solely by the clinician and the patient. PharmGKB assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of the PharmGKB clinical annotations, or for any errors or omissions.

? = Mouse-over for quick help

The table below contains information about pharmacogenomic variants on PharmGKB. Please follow the link in the "Variant" column for more information about a particular variant. Each link in the "Variant" column leads to the corresponding PharmGKB Variant Page. The Variant Page contains summary data, including PharmGKB manually curated information about variant-drug pairs based on individual PubMed publications. The PMIDs for these PubMed publications can be found on the Variant Page.

The tags in the first column of the table indicate what type of information can be found on the corresponding Variant Page.

Links in the "Gene" column lead to PharmGKB Gene Pages.

List of all variant annotations for acenocoumarol

Gene ? Variant?
(147)
Alternate Names ? Chemicals ? Alleles ?
(+ chr strand)
Function ? Amino Acid?
Translation
No VIP available No VIP available VA CYP2C19 *1 N/A N/A N/A
No VIP available No VIP available VA CYP2C19 *2 N/A N/A N/A
No VIP available No VIP available VA CYP2C19 *3 N/A N/A N/A
No VIP available CA VA CYP2C9 *1 N/A N/A N/A
No VIP available CA VA CYP2C9 *2 N/A N/A N/A
No VIP available CA VA CYP2C9 *3 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *5 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *6 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *8 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *9 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *11 N/A N/A N/A
No VIP available No VIP available VA CYP2C9 *57 N/A N/A N/A
No VIP available No VIP available VA CYP3A4 *1B N/A N/A N/A
VIP No VIP available VA VKORC1 *1 N/A N/A N/A
VIP No VIP available VA VKORC1 *2 N/A N/A N/A
VIP No VIP available VA VKORC1 *3 N/A N/A N/A
VIP No VIP available VA VKORC1 *4 N/A N/A N/A
No VIP available No Clinical Annotations available VA
rs1043550 NC_000007.13:g.128409225A>G, NC_000007.14:g.128769171A>G, NG_033110.1:g.34880A>G, NM_001130674.2:c.*4A>G, NM_001199671.1:c.*4A>G, NM_001199672.1:c.*4A>G, NM_001199673.1:c.*77A>G, NM_001219.4:c.*4A>G, NR_074086.1:n.678A>G, XM_011516588.1:c.*4A>G, rs11545537, rs17475700, rs3183116, rs61381822
A > -
A > G
SNP
No VIP available No Clinical Annotations available VA
rs1045642 NC_000007.13:g.87138645A>G, NC_000007.14:g.87509329A>G, NG_011513.1:g.208920T>C, NM_000927.4:c.3435T>C, NP_000918.2:p.Ile1145=, rs10239679, rs11568726, rs117328163, rs17210003, rs2229108, rs386513066, rs60023214, rs9690664
A > G
SNP
I1145I
No VIP available No Clinical Annotations available VA
rs104894542 NC_000016.10:g.31091243A>C, NC_000016.9:g.31102564A>C, NG_011564.1:g.8713T>G, NM_001311311.1:c.467T>G, NM_024006.4:c.383T>G, NM_024006.5:c.383T>G, NM_206824.2:c.273T>G, NP_001298240.1:p.Leu156Arg, NP_076869.1:p.Leu128Arg, NP_996560.1:p.Ala91=, XM_005255568.1:c.467T>G, XM_011545816.1:c.-2434T>G, XM_011545817.1:c.-2434T>G, XM_011545818.1:c.-2434T>G, XM_011545819.1:c.-2434T>G, XM_011545820.1:c.-2434T>G, XM_011545943.1:c.467T>G, XM_011545944.1:c.383T>G, XM_011545945.1:c.273T>G, XP_005255625.1:p.Leu156Arg, XP_011544245.1:p.Leu156Arg, XP_011544246.1:p.Leu128Arg, XP_011544247.1:p.Ala91=, XR_243303.1:n.932T>G, XR_950848.1:n.1171T>G, rs28940305
A > C
SNP
L156A/R
No VIP available CA VA
rs1057910 NC_000010.10:g.96741053A=, NC_000010.10:g.96741053A>C, NC_000010.11:g.94981296A=, NC_000010.11:g.94981296A>C, NG_008385.1:g.47639A=, NG_008385.1:g.47639A>C, NM_000771.3:c.1075A=, NM_000771.3:c.1075A>C, NP_000762.2:p.Ile359=, NP_000762.2:p.Ile359Leu, XM_005269575.1:c.1075A=, XM_005269575.1:c.1075A>C, XP_005269632.1:p.Ile359=, XP_005269632.1:p.Ile359Leu, rs17847042, rs3198471, rs61212474
A > C
SNP
I359L
No VIP available No Clinical Annotations available VA
rs10871454 NC_000016.10:g.31036758C>T, NC_000016.9:g.31048079C>T, NM_001272095.1:c.145-1168C>T, NM_001272096.1:c.373-1168C>T, NM_004604.4:c.379-1168C>T, XM_005255521.1:c.367-1168C>T, XM_011545925.1:c.-52+997C>T, rs58361488
C > T
SNP
No VIP available CA VA
rs11676382 NC_000002.11:g.85777633C>G, NC_000002.12:g.85550510C>G, NG_011811.2:g.16025G>C, NM_000821.6:c.2084+45G>C, NM_001142269.3:c.1913+45G>C, XM_005264259.1:c.2078+45G>C, XM_005264259.3:c.2078+45G>C, XM_011532764.1:c.1262+45G>C, XM_011532765.1:c.1262+45G>C, XR_939677.1:n.2216G>C
C > G
SNP
No VIP available CA VA
rs17878544 NC_000016.10:g.31096606T>C, NC_000016.9:g.31107927T>C, NG_011564.1:g.3350A>G, NM_001311311.1:c.-1877A>G, NM_024006.5:c.-1877A>G, NM_206824.2:c.-1877A>G, XM_005255568.1:c.-1877A>G, XM_011545943.1:c.-1877A>G, XM_011545944.1:c.-1490A>G, XM_011545945.1:c.-1490A>G, XR_243303.1:n.-1228A>G, XR_950848.1:n.-269A>G
T > C
SNP
No VIP available CA VA
rs1799853 NC_000010.10:g.96702047C=, NC_000010.10:g.96702047C>T, NC_000010.11:g.94942290C=, NC_000010.11:g.94942290C>T, NG_008385.1:g.8633C=, NG_008385.1:g.8633C>T, NM_000771.3:c.430C=, NM_000771.3:c.430C>T, NP_000762.2:p.Arg144=, NP_000762.2:p.Arg144Cys, XM_005269575.1:c.430C=, XM_005269575.1:c.430C>T, XP_005269632.1:p.Arg144=, XP_005269632.1:p.Arg144Cys, rs17110268, rs28371674, rs33968134, rs60690363
C > T
SNP
R144C
No VIP available CA VA
rs2108622 NC_000019.10:g.15879621C>T, NC_000019.9:g.15990431C>T, NG_007971.2:g.23454G>A, NM_001082.4:c.1297G>A, NP_001073.3:p.Val433Met, rs116975254, rs52819608, rs57319528
C > T
SNP
V433M
No VIP available No Clinical Annotations available VA
rs2359612 NC_000016.10:g.31092475A>G, NC_000016.9:g.31103796A>G, NG_011564.1:g.7481T>C, NM_001311311.1:c.367+308T>C, NM_024006.5:c.283+837T>C, NM_206824.2:c.174-1133T>C, XM_005255568.1:c.367+308T>C, XM_011545943.1:c.367+308T>C, XM_011545944.1:c.283+837T>C, XM_011545945.1:c.174-1133T>C, XR_243303.1:n.832+837T>C, XR_950848.1:n.1071+837T>C, rs17884333
A > G
SNP
No VIP available No Clinical Annotations available VA
rs2884737 NC_000016.10:g.31094233A>C, NC_000016.9:g.31105554A>C, NG_011564.1:g.5723T>G, NM_001311311.1:c.173+324T>G, NM_024006.5:c.173+324T>G, NM_206824.2:c.173+324T>G, XM_005255568.1:c.173+324T>G, XM_011545943.1:c.173+324T>G, XM_011545944.1:c.173+324T>G, XM_011545945.1:c.173+324T>G, XR_243303.1:n.822+324T>G, XR_950848.1:n.961+324T>G, rs17882154
A > C
SNP
No VIP available No Clinical Annotations available VA
rs35599367 NC_000007.13:g.99366316G>A, NC_000007.14:g.99768693G>A, NG_008421.1:g.20493C>T, NM_001202855.2:c.522-191C>T, NM_017460.5:c.522-191C>T, XM_011515841.1:c.522-191C>T, XM_011515842.1:c.522-191C>T, rs45581939, rs62471940
G > A
SNP
No VIP available No Clinical Annotations available VA
rs3735814 NC_000008.10:g.11607396G>A, NC_000008.11:g.11749887G>A, NG_008177.2:g.77969G>A, NM_001308093.1:c.787-224G>A, NM_001308094.1:c.166-224G>A, NM_002052.4:c.784-224G>A, XM_005272384.1:c.787-224G>A, XM_005272385.1:c.787-224G>A, XM_005272385.3:c.787-224G>A, XM_005272386.1:c.787-224G>A, XM_005272387.1:c.166-224G>A, XM_006716248.1:c.787-224G>A, XM_006716249.2:c.166-224G>A, XM_011543817.1:c.787-224G>A, XM_011543818.1:c.787-224G>A, rs11567386, rs17153729, rs58685730
G > A
SNP
No VIP available CA VA
rs4086116 NC_000010.10:g.96707202C>T, NC_000010.11:g.94947445C>T, NG_008385.1:g.13788C>T, NM_000771.3:c.482-334C>T, XM_005269575.1:c.482-334C>T, rs56627368, rs57822479
C > T
SNP
No VIP available CA VA
rs55894764 NC_000016.10:g.31094694C>T, NC_000016.9:g.31106015C>T, NG_011564.1:g.5262G>A, NM_001311311.1:c.36G>A, NM_024006.5:c.36G>A, NM_206824.2:c.36G>A, NP_001298240.1:p.Arg12=, NP_076869.1:p.Arg12=, NP_996560.1:p.Arg12=, XM_005255568.1:c.36G>A, XM_011545943.1:c.36G>A, XM_011545944.1:c.36G>A, XM_011545945.1:c.36G>A, XP_005255625.1:p.Arg12=, XP_011544245.1:p.Arg12=, XP_011544246.1:p.Arg12=, XP_011544247.1:p.Arg12=, XR_243303.1:n.685G>A, XR_950848.1:n.824G>A
C > T
SNP
R12R
No VIP available CA VA
rs61742245 NC_000016.10:g.31094624C>A, NC_000016.9:g.31105945C>A, NG_011564.1:g.5332G>T, NM_001311311.1:c.106G>T, NM_024006.4:c.106G>T, NM_024006.5:c.106G>T, NM_206824.2:c.106G>T, NP_001298240.1:p.Asp36Tyr, NP_076869.1:p.Asp36Tyr, NP_996560.1:p.Asp36Tyr, XM_005255568.1:c.106G>T, XM_011545943.1:c.106G>T, XM_011545944.1:c.106G>T, XM_011545945.1:c.106G>T, XP_005255625.1:p.Asp36Tyr, XP_011544245.1:p.Asp36Tyr, XP_011544246.1:p.Asp36Tyr, XP_011544247.1:p.Asp36Tyr, XR_243303.1:n.755G>T, XR_950848.1:n.894G>T, rs104894543
C > A
SNP
D36Y
No VIP available No Clinical Annotations available VA
rs7196161 NC_000016.10:g.31099660G>A, NC_000016.9:g.31110981G>A, NG_011564.1:g.296C>T, rs17882285
G > A
SNP
No VIP available CA VA
rs7200749 NC_000016.10:g.31091268G>A, NC_000016.9:g.31102589G>A, NG_011564.1:g.8688C>T, NM_001311311.1:c.442C>T, NM_024006.5:c.358C>T, NM_206824.2:c.248C>T, NP_001298240.1:p.Leu148=, NP_076869.1:p.Leu120=, NP_996560.1:p.Pro83Leu, XM_005255568.1:c.442C>T, XM_011545816.1:c.-2459C>T, XM_011545817.1:c.-2459C>T, XM_011545818.1:c.-2459C>T, XM_011545819.1:c.-2459C>T, XM_011545820.1:c.-2459C>T, XM_011545943.1:c.442C>T, XM_011545944.1:c.358C>T, XM_011545945.1:c.248C>T, XP_005255625.1:p.Leu148=, XP_011544245.1:p.Leu148=, XP_011544246.1:p.Leu120=, XP_011544247.1:p.Pro83Leu, XR_243303.1:n.907C>T, XR_950848.1:n.1146C>T, rs17881770, rs59562965
G > A
SNP
L148L
No VIP available No Clinical Annotations available VA
rs72558189 NC_000010.10:g.96701991G>A, NC_000010.11:g.94942234G>A, NG_008385.1:g.8577G>A, NM_000771.3:c.374G>A, NP_000762.2:p.Arg125His, XM_005269575.1:c.374G>A, XP_005269632.1:p.Arg125His, rs73994288
G > A
SNP
R125H
rs7294 NC_000016.10:g.31091000C>T, NC_000016.9:g.31102321C>T, NG_011564.1:g.8956G>A, NM_001311311.1:c.*134G>A, NM_024006.5:c.*134G>A, NM_206824.2:c.*237G>A, XM_005255568.1:c.*134G>A, XM_011545816.1:c.-2191G>A, XM_011545817.1:c.-2191G>A, XM_011545818.1:c.-2191G>A, XM_011545819.1:c.-2191G>A, XM_011545820.1:c.-2191G>A, XM_011545943.1:c.*134G>A, XM_011545944.1:c.*134G>A, XM_011545945.1:c.*237G>A, XR_243303.1:n.1175G>A, XR_950848.1:n.1414G>A, rs17880624, rs59098562
C > T
SNP
No VIP available No Clinical Annotations available VA
rs7412 NC_000019.10:g.44908822C>T, NC_000019.9:g.45412079C>T, NG_007084.2:g.8041C>T, NM_000041.3:c.526C>T, NM_001302688.1:c.604C>T, NM_001302689.1:c.526C>T, NM_001302690.1:c.526C>T, NM_001302691.1:c.526C>T, NP_000032.1:p.Arg176Cys, NP_001289617.1:p.Arg202Cys, NP_001289618.1:p.Arg176Cys, NP_001289619.1:p.Arg176Cys, NP_001289620.1:p.Arg176Cys, XM_005258867.1:c.604C>T, XM_005258868.1:c.526C>T, XP_005258924.1:p.Arg202Cys, XP_005258925.1:p.Arg176Cys, rs3200542
C > T
SNP
R176C
rs9923231 NC_000016.10:g.31096368C=, NC_000016.10:g.31096368C>T, NC_000016.9:g.31107689C=, NC_000016.9:g.31107689C>T, NG_011564.1:g.3588G=, NG_011564.1:g.3588G>A, NM_001311311.1:c.-1639G=, NM_001311311.1:c.-1639G>A, NM_024006.5:c.-1639G=, NM_024006.5:c.-1639G>A, NM_206824.2:c.-1639G=, NM_206824.2:c.-1639G>A, XM_005255568.1:c.-1639G=, XM_005255568.1:c.-1639G>A, XM_011545943.1:c.-1639G=, XM_011545943.1:c.-1639G>A, XM_011545944.1:c.-1252G=, XM_011545944.1:c.-1252G>A, XM_011545945.1:c.-1252G=, XM_011545945.1:c.-1252G>A, XR_243303.1:n.-990G=, XR_243303.1:n.-990G>A, XR_950848.1:n.-31G=, XR_950848.1:n.-31G>A, rs117572127, rs17878363, rs60511154
C > A
C > G
C > T
SNP
rs9934438 NC_000016.10:g.31093557G>A, NC_000016.9:g.31104878G>A, NG_011564.1:g.6399C>T, NM_001311311.1:c.174-136C>T, NM_024006.5:c.174-136C>T, NM_206824.2:c.173+1000C>T, XM_005255568.1:c.174-136C>T, XM_011545943.1:c.174-136C>T, XM_011545944.1:c.174-136C>T, XM_011545945.1:c.173+1000C>T, XR_243303.1:n.823-236C>T, XR_950848.1:n.962-136C>T, rs17641219
G > A
SNP
Alleles, Functions, and Amino Acid Translations are all sourced from dbSNP 147

Overview

Generic Names
  • Acenocoumarin
  • Acenocoumarolum [inn-latin]
  • Nicoumalone
  • Nicumalon
  • Nitrophenylacetylethyl-4-hydroxycoumarine
  • Nitrovarfarian
  • Nitrowarfarin
Trade Names
  • Ascumar
  • Mini-sintrom
  • Neositron
  • Sincoumar
  • Sinkumar
  • Sinthrom
  • Sinthrome
  • Sintrom
  • Syncoumar
  • Syncumar
  • Syntrom
  • Zotil
Brand Mixture Names

PharmGKB Accession Id

PA452632

Type(s):

Drug

Description

Acenocoumarol is a coumarin derivative used as an anticoagulant. Coumarin derivatives inhibit the reduction of vitamin K by vitamin K reductase. This prevents carboxylation of vitamin K-dependent clotting factors, II, VII, XI and X, and interferes with coagulation. Hematocrit, hemoglobin, international normalized ratio and liver panel should be monitored. Patients on acenocoumarol are prohibited from giving blood.

Source: Drug Bank

Indication

For the treatment and prevention of thromboembolic diseases. More specifically, it is indicated for the for the prevention of cerebral embolism, deep vein thrombosis, pulmonary embolism, thromboembolism in infarction and transient ischemic attacks. It is used for the treatment of deep vein thrombosis and myocardial infarction.

Source: Drug Bank

Other Vocabularies

Information pulled from DrugBank has not been reviewed by PharmGKB.

Pharmacology, Interactions, and Contraindications

Mechanism of Action

Acenocoumarol inhibits vitamin K reductase, resulting in depletion of the reduced form of vitamin K (vitamin KH2). As vitamin K is a cofactor for the carboxylation of glutamate residues on the N-terminal regions of vitamin K-dependent clotting factors, this limits the gamma-carboxylation and subsequent activation of the vitamin K-dependent coagulant proteins. The synthesis of vitamin K-dependent coagulation factors II, VII, IX, and X and anticoagulant proteins C and S is inhibited resulting in decreased prothrombin levels and a decrease in the amount of thrombin generated and bound to fibrin. This reduces the thrombogenicity of clots.

Source: Drug Bank

Pharmacology

Acenocoumarol inhibits the reduction of vitamin K by vitamin K reductase. This prevents carboxylation of certain glutamic acid residues near the N-terminals of clotting factors II, VII, IX and X, the vitamin K-dependent clotting factors. Glutamic acid carboxylation is important for the interaction between these clotting factors and calcium. Without this interaction, clotting cannot occur. Both the extrinsic (via factors VII, X and II) and intrinsic (via factors IX, X and II) are affected by acenocoumarol.

Source: Drug Bank

Food Interaction

High doses of vitamin A, C, E and K (e.g. avocado, green vegetables)

Source: Drug Bank

Absorption, Distribution, Metabolism, Elimination & Toxicity

Biotransformation

Extensively metabolized in the liver via oxidation forming two hydroxy metabolites and keto reduction producing two alcohol metabolites. Reduction of the nitro group produces an amino metabolite which is further transformed to an acetoamido metabolite. Metabolites do not appear to be pharmacologically active.

Source: Drug Bank

Protein Binding

98.7% protein bound, mainly to albumin

Source: Drug Bank

Absorption

Rapidly absorbed orally with greater than 60% bioavailability. Peak plasma levels are attained 1 to 3 hours following oral administration.

Source: Drug Bank

Half-Life

8 to 11 hours.

Source: Drug Bank

Toxicity

The onset and severity of the symptoms are dependent on the individual's sensitivity to oral anticoagulants, the severity of the overdosage, and the duration of treatment. Bleeding is the major sign of toxicity with oral anticoagulant drugs. The most frequent symptoms observed are: cutaneous bleeding (80%), haematuria (with renal colic) (52%), haematomas, gastrointestinal bleeding, haematemesis, uterine bleeding, epistaxis, gingival bleeding and bleeding into the joints. Further symptoms include tachycardia, hypotension, peripheral circulatory disorders due to loss of blood, nausea, vomiting, diarrhoea and abdominal pains.

Source: Drug Bank

Route of Elimination

Mostly via the kidney as metabolites

Source: Drug Bank

Volume of Distribution

The volume of distribution at steady-state appeared to be significantly dose dependent: 78 ml/kg for doses < or = 20 microg/kg and 88 ml/kg for doses > 20 microg/kg respectively

Source: Drug Bank

Chemical Properties

Chemical Formula

C19H15NO6

Source: Drug Bank

Isomeric SMILES

CC(=O)CC(c1ccc(cc1)N(=O)=O)c2c(c3ccccc3oc2=O)O

Source: OpenEye

Canonical SMILES

CC(=O)CC(C1=CC=C(C=C1)[N+]([O-]

Source: Drug Bank

Average Molecular Weight

353.3255

Source: Drug Bank

Monoisotopic Molecular Weight

353.089937217

Source: Drug Bank

SMILES

CC(=O)CC(C1=CC=C(C=C1)[N+]([O-])=O)C1=C(O)C2=CC=CC=C2OC1=O

Source: Drug Bank

InChI String

InChI=1S/C19H15NO6/c1-11(21)10-15(12-6-8-13(9-7-12)20(24)25)17-18(22)14-4-2-3-5-16(14)26-19(17)23/h2-9,15,22H,10H2,1H3

Source: Drug Bank

Genes that are associated with this drug in PharmGKB's database based on (1) variant annotations, (2) literature review, (3) pathways or (4) information automatically retrieved from DrugBank, depending on the "evidence" and "source" listed below.

Curated Information ?

Drug Targets

Gene Description
ALB (source: Drug Bank)
ORM1 (source: Drug Bank)
VKORC1 (source: Drug Bank)

Curated Information ?

EvidenceDrug
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
warfarin

Drug Interactions

Interaction Description
acetaminophen - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
allopurinol - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
allopurinol - acenocoumarol Allopurinol may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
aminoglutethimide - acenocoumarol The agent decreases the anticoagulant effect (source: Drug Bank)
aminoglutethimide - acenocoumarol Aminoglutethimide may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
amiodarone - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
amiodarone - acenocoumarol Amiodarone may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ampicillin - acenocoumarol The IV penicillin increases the anticoagulant effect (source: Drug Bank)
amprenavir - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
amprenavir - acenocoumarol Amprenavir may increase the anticoagulant effect of acenocoumarol by increasing its serum concentration. (source: Drug Bank)
aprepitant - acenocoumarol Aprepitant may decrease the anticoagulant effect of acenocoumarol by decreasing its serum concentration. (source: Drug Bank)
aspirin - acenocoumarol The salicylate increases the effect of anticoagulant (source: Drug Bank)
aspirin - acenocoumarol Acetylsalicylic acid increases the effect of the anticoagulant, acenocoumarol. (source: Drug Bank)
atazanavir - acenocoumarol The protease inhibitor increase the anticoagulant effect (source: Drug Bank)
atazanavir - acenocoumarol The protease inhibitor, atazanavir, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
azathioprine - acenocoumarol The thiopurine decreases the anticoagulant effect (source: Drug Bank)
azathioprine - acenocoumarol Azathioprine may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
azithromycin - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
azithromycin - acenocoumarol Azithromycin may increase the anticoagulant effect of acenocoumarol by increasing its serum concentration. (source: Drug Bank)
betamethasone - acenocoumarol The corticosteroid, betamethasone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
bosentan - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
bosentan - acenocoumarol Bosentan may decrease the anticoagulant effect of acenocoumarol by increasing its metabolism. (source: Drug Bank)
capecitabine - acenocoumarol The antineoplastic agent increases the anticoagulant effect (source: Drug Bank)
capecitabine - acenocoumarol Capecitabine may increase the anticoagulant effect of acenocoumarol by increasing its serum concentration. (source: Drug Bank)
carbamazepine - acenocoumarol Decreases the anticoagulant effect (source: Drug Bank)
carbamazepine - acenocoumarol Carbamazepine may decrease the anticoagulant effect of acenocoumarol by decreasing its serum concentration. (source: Drug Bank)
carbenicillin - acenocoumarol The IV penicillin increases the anticoagulant effect (source: Drug Bank)
cefotetan - acenocoumarol The cephalosporin, cefotetan, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
cefoxitin - acenocoumarol The cephalosporin increases the anticoagulant effect (source: Drug Bank)
cefoxitin - acenocoumarol The cephalosporin, cefoxitin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
celecoxib - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
celecoxib - acenocoumarol Celecoxib may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
chloramphenicol - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
cholestyramine - acenocoumarol The gastro-intestinal binding agent decreases the anticoagulant effect (source: Drug Bank)
cholestyramine - acenocoumarol The bile acid sequestrant, cholestyramine, may decrease the anticoagulant effect of acenocoumarol by decreasing its absorption. (source: Drug Bank)
cimetidine - acenocoumarol The anti-H2 increases the anticoagulant effect (source: Drug Bank)
cimetidine - acenocoumarol Cimetidine may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ciprofloxacin - acenocoumarol The quinolone increases the anticoagulant effect (source: Drug Bank)
ciprofloxacin - acenocoumarol The quinolone antibiotic, ciprofloxacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
cisapride - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
cisapride - acenocoumarol Cisapride may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
citalopram - acenocoumarol The SSRI increases the effect of anticoagulant (source: Drug Bank)
citalopram - acenocoumarol The SSRI, citalopram, increases the effect of anticoagulant, acenocoumarol. (source: Drug Bank)
clarithromycin - acenocoumarol The macrolide increases anticoagulant effect (source: Drug Bank)
clarithromycin - acenocoumarol The macrolide, clarithromycin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
clofibrate - acenocoumarol The fibrate increases the anticoagulant effect (source: Drug Bank)
clofibrate - acenocoumarol The fibrate increases the anticoagulant effect (source: Drug Bank)
cloxacillin - acenocoumarol The IV penicillin increases the anticoagulant effect (source: Drug Bank)
colestipol - acenocoumarol The gastro-intestinal binding agent decreases the anticoagulant effect (source: Drug Bank)
colestipol - acenocoumarol The bile acid sequestrant, colestipol, may decrease the anticoagulant effect of acenocoumarol by decreasing its absorption. (source: Drug Bank)
danazol - acenocoumarol The androgen, danazol, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
demeclocycline - acenocoumarol The tetracycline, demeclocycline, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
dexamethasone - acenocoumarol The corticosteroid alters the anticoagulant effect (source: Drug Bank)
dexamethasone - acenocoumarol The corticosteroid, dexamethasone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
dextrothyroxine - acenocoumarol The thyroid hormone, dextrothyroxine, increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
dibucaine - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
dicloxacillin - acenocoumarol Dicloxacillin may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
diflunisal - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
diflunisal - acenocoumarol The NSAID, diflunisal, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
disulfiram - acenocoumarol Disulfiram increases the anticoagulant effect (source: Drug Bank)
disulfiram - acenocoumarol Disulfiram may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
doxycycline - acenocoumarol The tetracycline increases the anticoagulant effect (source: Drug Bank)
doxycycline - acenocoumarol The tetracycline, doxycycline, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
erythromycin - acenocoumarol The macrolide increases anticoagulant effect (source: Drug Bank)
erythromycin - acenocoumarol The macrolide, erythromycin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ethacrynic acid - acenocoumarol Ethacrynic acid increases the anticoagulant effect (source: Drug Bank)
ethchlorvynol - acenocoumarol Ethchlorvynol may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ethinyl estradiol - acenocoumarol Increased thrombotic risk due to estrogen (source: Drug Bank)
ethinyl estradiol - acenocoumarol Increased thrombotic risk due to estrogen (source: Drug Bank)
etodolac - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
etodolac - acenocoumarol The NSAID, etodolac, may increase the anticoagulant effect or acenocoumarol. (source: Drug Bank)
etoricoxib - acenocoumarol Etoricoxib may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
fenofibrate - acenocoumarol The fibrate increases the anticoagulant effect (source: Drug Bank)
fenofibrate - acenocoumarol Fenofibrate may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
fenoprofen - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
fenoprofen - acenocoumarol The NSAID, fenoprofen, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
fluconazole - acenocoumarol Increases the anticoagulant effect (source: Drug Bank)
fluconazole - acenocoumarol Fluconazole may increase the serum concentration of acenocoumarol by decreasing its metabolism. (source: Drug Bank)
fludrocortisone - acenocoumarol The corticosteroid, fludrocortisone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
fluorouracil - acenocoumarol The antineoplasic agent increases the anticoagulant effect (source: Drug Bank)
fluorouracil - acenocoumarol The antineoplasic agent, fluorouracil, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
fluoxetine - acenocoumarol The SSRI increases the effect of anticoagulant (source: Drug Bank)
fluoxetine - acenocoumarol The SSRI, fluoxetine, increases the effect of anticoagulant, acenocoumarol. (source: Drug Bank)
fluoxymesterone - acenocoumarol The androgen, fluoxymesterone, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
flurbiprofen - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
flurbiprofen - acenocoumarol The NSAID, flurbiprofen, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
flutamide - acenocoumarol Flutamide increases the anticoagulant effect (source: Drug Bank)
fluvastatin - acenocoumarol The statin increases the anticoagulant effect (source: Drug Bank)
fluvastatin - acenocoumarol The statin increases the anticoagulant effect (source: Drug Bank)
fosamprenavir - acenocoumarol The protease inhibitor increases the anticoagulant effect (source: Drug Bank)
fosamprenavir - acenocoumarol The protease inhibitor, fosamprenavir, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
fosphenytoin - acenocoumarol Increased hydantoin levels and risk of bleeding (source: Drug Bank)
gatifloxacin - acenocoumarol Gatifloxacin increases the anticoagulant effect (source: Drug Bank)
gefitinib - acenocoumarol Gefitinib increases the anticoagulant effect (source: Drug Bank)
gefitinib - acenocoumarol Gefitinib may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
gemfibrozil - acenocoumarol Gemfibrozil increases the anticoagulant effect (source: Drug Bank)
gemfibrozil - acenocoumarol Gemfibrozil may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ginkgo biloba - acenocoumarol Additive anticoagulant/antiplatelet effects may increase bleed risk. Concomitant therapy should be avoided. (source: Drug Bank)
glutethimide - acenocoumarol Glutethimide may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
griseofulvin - acenocoumarol Griseofulvin decreases the anticoagulant effect (source: Drug Bank)
griseofulvin - acenocoumarol Griseofulvin may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
hydrocortisone - acenocoumarol The corticosteroid alters the anticoagulant effect (source: Drug Bank)
hydrocortisone - acenocoumarol The corticosteroid, hydrocortisone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
ibuprofen - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
ibuprofen - acenocoumarol The NSAID, ibuprofen, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
imatinib - acenocoumarol Imatinib increases the anticoagulant effect (source: Drug Bank)
imatinib - acenocoumarol Imatinib may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
indinavir - acenocoumarol The protease inhibitor increases the anticoagulant effect (source: Drug Bank)
indinavir - acenocoumarol The protease inhibitor, indinavir, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
indomethacin - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
indomethacin - acenocoumarol The NSAID, indomethacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
isoniazid - acenocoumarol The agent increases the effect of anticoagulant (source: Drug Bank)
isoniazid - acenocoumarol Isoniazid may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
itraconazole - acenocoumarol The imidazole increases the effect of the anticoagulant (source: Drug Bank)
itraconazole - acenocoumarol Itraconazole may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ketoconazole - acenocoumarol The imidazole increases the effect of the anticoagulant (source: Drug Bank)
ketoconazole - acenocoumarol Ketoconazole may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ketoprofen - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
ketoprofen - acenocoumarol The NSAID, ketoprofen, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ketorolac - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
ketorolac - acenocoumarol The NSAID, ketorolac, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
leflunomide - acenocoumarol Leflunomide increases the anticoagulant effect (source: Drug Bank)
leflunomide - acenocoumarol Leflunomide may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
levamisole - acenocoumarol The agent increases the anticoagulant effect (source: Drug Bank)
levamisole - acenocoumarol Levamisole may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
levofloxacin - acenocoumarol The quinolone increases the anticoagulant effect (source: Drug Bank)
levofloxacin - acenocoumarol The quinolone antibiotic, levofloxacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
levothyroxine - acenocoumarol Thyroid hormones increase the anticoagulant effect (source: Drug Bank)
levothyroxine - acenocoumarol The thyroid hormone, levothyroxine, increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
lovastatin - acenocoumarol The statin increases the anticoagulant effect (source: Drug Bank)
lovastatin - acenocoumarol The statin increases the anticoagulant effect (source: Drug Bank)
lumiracoxib - acenocoumarol Lumiracoxib may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
medroxyprogesterone - acenocoumarol The agent increases the effect of anticoagulant (source: Drug Bank)
medroxyprogesterone - acenocoumarol Medroxyprogesterone may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
mefenamic acid - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
mefenamic acid - acenocoumarol The NSAID, mefanamic acid, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
mefloquine - acenocoumarol Mefloquine can increase the anticoagulant effect (source: Drug Bank)
mefloquine - acenocoumarol Mefloquine may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
meloxicam - acenocoumarol Meloxicam increases the anticoagulant effect (source: Drug Bank)
meloxicam - acenocoumarol Meloxicam may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
mercaptopurine - acenocoumarol Mercaptopurine may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
methimazole - acenocoumarol The antithyroid agent causes variations in the anticoagulant effect (source: Drug Bank)
methimazole - acenocoumarol The antithyroid agent, methimazole, may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
metronidazole - acenocoumarol Metronidazole increases the anticoagulant effect (source: Drug Bank)
metronidazole - acenocoumarol Metronidazole may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
miconazole - acenocoumarol Vaginal miconazole increases the anticoagulant effect (source: Drug Bank)
miconazole - acenocoumarol Miconazole may increase the serum concentration of acenocoumarol by decreasing its metabolism. (source: Drug Bank)
minocycline - acenocoumarol The tetracycline increases the anticoagulant effect (source: Drug Bank)
minocycline - acenocoumarol The tetracycline, minocycline, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
mitotane - acenocoumarol Mitotane may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
moxifloxacin - acenocoumarol Moxifloxacin increases the anticoagulant effect (source: Drug Bank)
moxifloxacin - acenocoumarol The quinolone antibiotic, moxifloxacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
nabumetone - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
nabumetone - acenocoumarol The NSAID, nabumetone, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
nalidixic acid - acenocoumarol The quinolone antibiotic, nalidixic acid, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
naproxen - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
naproxen - acenocoumarol The NSAID, naproxen, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
nelfinavir - acenocoumarol The protease inhibitor increases the anticoagulant effect (source: Drug Bank)
nelfinavir - acenocoumarol The protease inhibitor, nelfinavir, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
nevirapine - acenocoumarol Nevirapine decreases the anticoagulant effect (source: Drug Bank)
nevirapine - acenocoumarol Nevirapine may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
norfloxacin - acenocoumarol The quinolone increases the anticoagulant effect (source: Drug Bank)
norfloxacin - acenocoumarol The quinolone antibiotic, norfloxacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
ofloxacin - acenocoumarol The quinolone increases the anticoagulant effect (source: Drug Bank)
ofloxacin - acenocoumarol The quinolone antibiotic, ofloxacin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
orlistat - acenocoumarol Orlistat increases the anticoagulant effect (source: Drug Bank)
orlistat - acenocoumarol Orlistat may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
oxaprozin - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
oxaprozin - acenocoumarol The NSAID, oxaprozin, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
oxyphenbutazone - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
oxyphenbutazone - acenocoumarol The NSAID, oxyphenbutazone, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
penicillin g - acenocoumarol The IV penicillin increases the anticoagulant effect (source: Drug Bank)
pentoxifylline - acenocoumarol Pentoxifylline increases the anticoagulant effect (source: Drug Bank)
pentoxifylline - acenocoumarol Pentoxifylline may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
phenobarbital - acenocoumarol The barbiturate decreases the anticoagulant effect (source: Drug Bank)
phenobarbital - acenocoumarol The barbiturate, phenobarbital, decreases the anticoagulant effect of acenocoumarol. (source: Drug Bank)
phenylbutazone - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
phenylbutazone - acenocoumarol The NSAID, phenylbutazone, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
phenytoin - acenocoumarol Increased hydantoin levels and risk of bleeding (source: Drug Bank)
phenytoin - acenocoumarol Increased hydantoin levels and risk of bleeding (source: Drug Bank)
piperacillin - acenocoumarol The IV penicillin increases the anticoagulant effect (source: Drug Bank)
piroxicam - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
piroxicam - acenocoumarol The NSAID, piroxicam, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
prednisolone - acenocoumarol The corticosteroid alters the anticoagulant effect (source: Drug Bank)
prednisolone - acenocoumarol The corticosteroid, prednisolone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
prednisone - acenocoumarol The corticosteroid alters the anticoagulant effect (source: Drug Bank)
prednisone - acenocoumarol The corticosteroid, prednisone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
primidone - acenocoumarol The barbiturate decreases the anticoagulant effect (source: Drug Bank)
primidone - acenocoumarol The barbiturate, primidone, decreases the anticoagulant effect of acenocoumarol. (source: Drug Bank)
propafenone - acenocoumarol The agent increases the effect of anticoagulant (source: Drug Bank)
propafenone - acenocoumarol Propafenone may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
propoxyphene - acenocoumarol Propoxyphene increases the anticoagulant effect (source: Drug Bank)
propoxyphene - acenocoumarol Propoxyphene may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
propylthiouracil - acenocoumarol The anti-thyroid agent causes variations in the anticoagulant effect (source: Drug Bank)
propylthiouracil - acenocoumarol The anti-thyroid agent, propylthiouracil, may decrease the anticoagulant effect of acenocoumarol. (source: Drug Bank)
quinidine - acenocoumarol Quinine/quinidine increases the anticoagulant effect (source: Drug Bank)
quinidine - acenocoumarol Quinidine may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
quinine - acenocoumarol Quinine/quinidine increases the anticoagulant effect (source: Drug Bank)
quinine - acenocoumarol Quinine, a moderate CYP2C9 inhibitor, may increase the serum concentration of acenocoumarol by decreasing its metabolism via CYP2C9. (source: Drug Bank)
ranitidine - acenocoumarol The anti-H2 increases the anticoagulant effect (source: Drug Bank)
ranitidine - acenocoumarol Ranitidine may increase the anticoagulant effect of acenocoumarol. (Conflicting evidence) (source: Drug Bank)
rifabutin - acenocoumarol The rifamycin decreases the anticoagulant effect (source: Drug Bank)
rifabutin - acenocoumarol Rifabutin may decrease the anticoagulant effect of acenocoumarol by increasing its metabolism. (source: Drug Bank)
rifampin - acenocoumarol The rifamycin decreases the anticoagulant effect (source: Drug Bank)
rifampin - acenocoumarol Rifampin may decrease the anticoagulant effect of acenocoumarol by increasing its metabolism. (source: Drug Bank)
sulindac - acenocoumarol The NSAID, sulindac, may increase the anticoagulant effect of acenocoumarol. Consider alternate therapy or monitor for signs and symptoms of bleeding during concomitant therapy. (source: Drug Bank)
tamoxifen - acenocoumarol Tamoxifen may increase the serum concentration of Acenocoumarol increasing the risk of bleeding. Concomitant therapy should be avoided. (source: Drug Bank)
tamoxifen - acenocoumarol Tamoxifen may increase the serum concentration of Acenocoumarol increasing the risk of bleeding. Concomitant therapy should be avoided. (source: Drug Bank)
telithromycin - acenocoumarol Telithromycin increases the anticoagulant effect (source: Drug Bank)
telithromycin - acenocoumarol Telithromycin may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
tenoxicam - acenocoumarol The NSAID increases the anticoagulant effect (source: Drug Bank)
tenoxicam - acenocoumarol The NSAID, tenoxicam, may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
testolactone - acenocoumarol The androgen, Testolactone, may incrase the anticoagulant effect of the Vitamin K antagonist, Acenocoumarol. Monitor for changes in the therapeutic effect of Acenocoumarol if Testolactone is initiated, discontinued or dose changed. (source: Drug Bank)
testosterone - acenocoumarol The androgen increases the anticoagulant effect (source: Drug Bank)
testosterone - acenocoumarol The androgen, Testosterone, may incrase the anticoagulant effect of the Vitamin K antagonist, Acenocoumarol. Monitor for changes in the therapeutic effect of Acenocoumarol if Testosterone is initiated, discontinued or dose changed. (source: Drug Bank)
testosterone propionate - acenocoumarol The androgen, Testosterone, may incrase the anticoagulant effect of the Vitamin K antagonist, Acenocoumarol. Monitor for changes in the therapeutic effect of Acenocoumarol if Testosterone is initiated, discontinued or dose changed. (source: Drug Bank)
tetracycline - acenocoumarol The tetracycline increases the anticoagulant effect (source: Drug Bank)
tetracycline - acenocoumarol Tetracycline may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
thiabendazole - acenocoumarol The strong CYP1A2 inhibitor, Thiabendazole, may increase the effects and toxicity of Acenocoumarol by decreasing Acenocoumarol metabolism and clearance. Monitor for changes in the therapeutic and adverse effects of Acenocoumarol if Thiabendazole is initiated, discontinued or dose changed. (source: Drug Bank)
thiopental - acenocoumarol Thiopental may increase the metabolism of the Vitamin K antagonist, Acenocoumarol. Acenocoumarol dose adjustment may be required. (source: Drug Bank)
thiopental - acenocoumarol Thiopental may increase the metabolism of the Vitamin K antagonist, Acenocoumarol. Acenocoumarol dose adjustment may be required. (source: Drug Bank)
tiaprofenic acid - acenocoumarol Increased risk of bleeding. (source: Drug Bank)
tigecycline - acenocoumarol Tigecycline may increase the anticoagulant effect of acenocoumarol. (source: Drug Bank)
tolbutamide - acenocoumarol Tolbutamide, a strong CYP2C9 inhibitor, may decrease the metabolism and clearance of Acenocoumarol. Consider alternate therapy or monitor for changes in Acenocoumarol therapeutic and adverse effects if Tolbutamide is initiated, discontinued or dose changed. (source: Drug Bank)
tolbutamide - acenocoumarol Tolbutamide, a strong CYP2C9 inhibitor, may decrease the metabolism and clearance of Acenocoumarol. Consider alternate therapy or monitor for changes in Acenocoumarol therapeutic and adverse effects if Tolbutamide is initiated, discontinued or dose changed. (source: Drug Bank)
tolmetin - acenocoumarol Increased risk of bleeding. Monitor for signs and symptoms of bleeding. (source: Drug Bank)
trazodone - acenocoumarol Trazodone decreases the anticoagulant effect (source: Drug Bank)
trazodone - acenocoumarol Trazodone decreases the anticoagulant effect (source: Drug Bank)
treprostinil - acenocoumarol The prostacyclin analogue, Treprostinil, increases the risk of bleeding when combined with the anticoagulant, Acenocoumarol. Monitor for increased bleeding during concomitant thearpy. (source: Drug Bank)
triamcinolone - acenocoumarol The corticosteroid alters the anticoagulant effect (source: Drug Bank)
triamcinolone - acenocoumarol The corticosteroid, triamcinolone, alters the anticoagulant effect, acenocoumarol. (source: Drug Bank)
trimetrexate - acenocoumarol The anticoagulant effect of Acenocoumarol, a Vitamin K antagonist, may be altered by antineoplastics such as Trimetrexate. Monitor for changes in the anticoagulant effects of warfarin and other coumarin derivatives during concomitant use. (source: Drug Bank)
trimetrexate - acenocoumarol The anticoagulant effect of Acenocoumarol, a Vitamin K antagonist, may be altered by antineoplastics such as Trimetrexate. Monitor for changes in the anticoagulant effects of warfarin and other coumarin derivatives during concomitant use. (source: Drug Bank)
zafirlukast - acenocoumarol Zafirlukast may inhibit the metabolism of the vitamin K antagonist Acenocoumarol and increase INR and risk of bleeding. (source: Drug Bank)

Curated Information ?

Publications related to acenocoumarol: 87

No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of VKORC1 and CYP2C9 Polymorphisms on Daily Acenocoumarol Dose Requirement in South Indian Patients With Mechanical Heart Valves. Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2016. Kalpana S R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
High prevalence of VKORC1*3 (G9041A) genetic polymorphism in north Indians: A study on patients with cardiac disorders on acenocoumarol. Drug discoveries & therapeutics. 2016. Sehgal Tushar, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
A New Pharmacogenetic Algorithm to Predict the Most Appropriate Dosage of Acenocoumarol for Stable Anticoagulation in a Mixed Spanish Population. PloS one. 2016. Tong Hoi Y, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Genotype-guided therapy improves initial acenocoumarol dosing. Results from a prospective randomised study. Thrombosis and haemostasis. 2015. Cerezo-Manchado Juan Jose, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
An acenocoumarol dosing algorithm exploiting clinical and genetic factors in South Indian (Dravidian) population. European journal of clinical pharmacology. 2015. Krishna Kumar Dhakchinamoorthi, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available VIP No VIP available
PharmGKB summary: very important pharmacogene information for CYP4F2. Pharmacogenetics and genomics. 2014. Alvarellos Maria L, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Pharmacogenetics role in the safety of acenocoumarol therapy. Thrombosis and haemostasis. 2014. Jiménez-Varo E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Prediction of stable acenocoumarol dose by a pharmacogenetic algorithm. Pharmacogenetics and genomics. 2014. Jiménez-Varo Enrique, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genetic determinants of acenocoumarol and warfarin maintenance dose requirements in Slavic population: A potential role of CYP4F2 and GGCX polymorphisms. Thrombosis research. 2014. Wypasek Ewa, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Personalized pharmacogenomics profiling using whole-genome sequencing. Pharmacogenomics. 2014. Mizzi Clint, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of VKORC1, CYP2C9 and CYP4F2 genetic variants in early outcomes during acenocoumarol treatment. Pharmacogenomics. 2014. Cerezo-Manchado Juan Jose, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP2C9 polymorphism and phenytoin co-administration on acenocoumarol dose in patients with cerebral venous thrombosis. Thrombosis research. 2014. De Tanima, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
A new algorithm for weekly phenprocoumon dose variation in a southern Brazilian population: role for CYP2C9, CYP3A4/5 and VKORC1 genes polymorphisms. Basic & clinical pharmacology & toxicology. 2014. Botton Mariana R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetic-guided dosing of coumarin anticoagulants: algorithms for warfarin, acenocoumarol and phenprocoumon. British journal of clinical pharmacology. 2014. Verhoef Talitha I, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP2C9, VKORC1, CYP4F2, ABCB1 and F5 variants: influence on quality of long-term anticoagulation. Pharmacological reports : PR. 2014. Nahar Risha, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP4F2 1347 G > A & GGCX 12970 C > G polymorphisms: frequency in north Indians & their effect on dosing of acenocoumarol oral anticoagulant. The Indian journal of medical research. 2014. Rathore Saurabh Singh, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Improved accuracy of anticoagulant dose prediction using a pharmacogenetic and artificial neural network-based method. European journal of clinical pharmacology. 2014. Isma'eel Hussain A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
An acenocoumarol dose algorithm based on a South-Eastern European population. European journal of clinical pharmacology. 2013. Pop Tudor Radu, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of genetic and clinical factors on dose requirements and quality of anticoagulation therapy in Polish patients receiving acenocoumarol: dosing calculation algorithm. Pharmacogenetics and genomics. 2013. Wolkanin-Bartnik Jolanta, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
A Randomized Trial of Genotype-Guided Dosing of Acenocoumarol and Phenprocoumon. The New England journal of medicine. 2013. Verhoef Talitha I, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Mechanical heart valve recipients: anticoagulation in patients with genetic variations of phenprocoumon metabolism. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2013. Brehm Kerstin, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenomics of acetylsalicylic acid and other nonsteroidal anti-inflammatory agents: clinical implications. European journal of clinical pharmacology. 2013. Yiannakopoulou Eugenia. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Implication of novel CYP2C9*57 (p.Asn204His) variant in coumarin hypersensitivity. Thrombosis research. 2013. Nahar Risha, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP2C9 polymorphisms on the vulnerability to pharmacokinetic drug-drug interactions during acenocoumarol treatment. Pharmacogenomics. 2013. Gschwind Liliane, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP2C9 and VKORC1 genetic polymorphisms on mean daily maintenance dose of acenocoumarol in South Indian patients. Thrombosis research. 2013. Krishna Kumar Dhakchinamoorthi, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The impact of the CYP2C9 and VKORC1 polymorphisms on acenocoumarol dose requirements in a Romanian population. Blood cells, molecules & diseases. 2013. Buzoianu Anca Dana, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Evaluation of the effect of SNPs in CYP3A4 and CYP4F2 on the stable phenprocoumon and acenocoumarol maintenance dose. Journal of thrombosis and haemostasis : JTH. 2013. van Schie Rianne M F, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Cytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1 -1639G The Indian journal of medical research. 2013. Kaur Anupriya, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Evaluation of the effect of genetic variations in GATA-4 on the phenprocoumon and acenocoumarol maintenance dose. Pharmacogenomics. 2012. van Schie Rianne M F, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Novel associations of VKORC1 variants with higher acenocoumarol requirements. PloS one. 2013. Anton Ana Isabel, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Randomised trial of a clinical dosing algorithm to start anticoagulation with phenprocoumon. Swiss medical weekly. 2013. Caduff Good Angela, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of the CYP4F2 p.V433M Polymorphism on Coumarin Dose Requirement: Systematic Review and Meta-Analysis. Clinical pharmacology and therapeutics. 2012. Danese E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP2C9 and VKORC1 gene polymorphism is inessential for bleeding development under conditions of oral application of anticoagulant acenocoumarol in Russian patients at high risk of thromboembolic complications. Bulletin of experimental biology and medicine. 2012. Sychev D V, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of genetics and non-genetic factors on acenocoumarol maintenance dose requirement in Moroccan patients. Journal of clinical pharmacy and therapeutics. 2012. Smires F Z, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Validation of the acenocoumarol EU-PACT algorithms: similar performance in the Rotterdam Study cohort as in the original study. Pharmacogenomics. 2012. van Schie Rianne Mf, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Acenocoumarol sensitivity and pharmacokinetic characterization of CYP2C9 *5/*8,*8/*11,*9/*11 and VKORC1*2 in black African healthy Beninese subjects. European journal of drug metabolism and pharmacokinetics. 2012. Allabi Aurel Constant, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Long-term anticoagulant effects of the CYP2C9 and VKORC1 genotypes in acenocoumarol users. Journal of thrombosis and haemostasis : JTH. 2012. Verhoef T I, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in spanish patients with thromboembolic disease. PloS one. 2012. Borobia Alberto M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Therapeutic dosing of acenocoumarol: proposal of a population specific pharmacogenetic dosing algorithm and its validation in north Indians. PloS one. 2012. Rathore Saurabh Singh, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people. Journal of clinical pharmacology. 2011. Esmerian Maria O, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. European heart journal. 2011. van Schie Rianne M F, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Prediction of phenprocoumon maintenance dose and phenprocoumon plasma concentration by genetic and non-genetic parameters. European journal of clinical pharmacology. 2011. Geisen Christof, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics: From Bench to Byte- An Update of Guidelines. Clinical pharmacology and therapeutics. 2011. Swen J J, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Impact of pharmacokinetic (CYP2C9) and pharmacodynamic (VKORC1, F7, GGCX, CALU, EPHX1) gene variants on the initiation and maintenance phases of phenprocoumon therapy. Thrombosis and haemostasis. 2011. Luxembourg Baete, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
In pediatric patients, age has more impact on dosing of vitamin K antagonists than VKORC1 or CYP2C9 genotypes. Blood. 2010. Nowak-Göttl Ulrike, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available VIP No VIP available
VKORC1 pharmacogenomics summary. Pharmacogenetics and genomics. 2010. Owen Ryan P, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
VKORC1 -1639G>A and CYP2C9*3 are the major genetic predictors of phenprocoumon dose requirement. European journal of clinical pharmacology. 2010. Puehringer Helene, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genetic determinants of acenocoumarol and phenprocoumon maintenance dose requirements. European journal of clinical pharmacology. 2010. Cadamuro Janne, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A genome-wide association study of acenocoumarol maintenance dosage. Human molecular genetics. 2009. Teichert Martina, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Dependency of phenprocoumon dosage on polymorphisms in the VKORC1 and CYP2C9 genes. Journal of thrombosis and thrombolysis. 2009. Qazim Berisha, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetic relevance of CYP4F2 V433M polymorphism on acenocoumarol therapy. Blood. 2009. Pérez-Andreu Virginia, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genotypes associated with reduced activity of VKORC1 and CYP2C9 and their modification of acenocoumarol anticoagulation during the initial treatment period. Clinical pharmacology and therapeutics. 2009. Teichert M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetics of acenocoumarol: CYP2C9 *2 and VKORC1 c.-1639G>A, 497C>G, 1173C>T, and 3730G>A variants influence drug dose in anticoagulated patients. Thrombosis and haemostasis. 2009. Verde Zoraida, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The influence of polymorphisms of VKORC1 and CYP2C9 on major gastrointestinal bleeding risk in anticoagulated patients. British journal of haematology. 2008. Montes Ramón, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A vitamin K epoxide reductase-oxidase complex gene polymorphism (-1639G>A) and interindividual variability in the dose-effect of vitamin K antagonists. Journal of applied genetics. 2009. Stepien E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available VIP No VIP available
Pharmacogenetic differences between warfarin, acenocoumarol and phenprocoumon. Thrombosis and haemostasis. 2008. Beinema Maarten, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
VKORC1 and CYP2C9 allelic variants influence acenocoumarol dose requirements in Greek patients. Pharmacogenomics. 2008. Markatos Christos N, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Evidence for a pharmacogenetic adapted dose of oral anticoagulant in routine medical practice. European journal of clinical pharmacology. 2008. Becquemont Laurent. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effects of CYP2C9 and VKORC1 on INR variations and dose requirements during initial phase of anticoagulant therapy. Pharmacogenomics. 2008. Spreafico Marta, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics of oral anticoagulants: a basis for dose individualization. Clinical pharmacokinetics. 2008. Stehle Simone, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetics of acenocoumarol: CYP2C9, CYP2C19, CYP1A2, CYP3A4, CYP3A5 and ABCB1 gene polymorphisms and dose requirements. Journal of clinical pharmacy and therapeutics. 2007. Saraeva R B, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Extended prophylaxis of venous thromboembolism with idraparinux. The New England journal of medicine. 2007. van Gogh Investigators, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Idraparinux versus standard therapy for venous thromboembolic disease. The New England journal of medicine. 2007. van Gogh Investigators, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The genetic interaction between VKORC1 c1173t and calumenin a29809g modulates the anticoagulant response of acenocoumarol. Journal of thrombosis and haemostasis : JTH. 2007. González-Conejero R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Oral anticoagulant and antiplatelet therapy and peripheral arterial disease. The New England journal of medicine. 2007. Warfarin Antiplatelet Vascular Evaluation Trial Investigators, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clinical pharmacology and therapeutics. 2006. Schalekamp Tom, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. British journal of haematology. 2006. Montes Ramón, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Cytochrome P450 2C9 polymorphism and acenocoumarol therapy. Kardiologia polska. 2006. Mark Laszlo, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Contribution of CYP2C9 to variability in vitamin K antagonist metabolism. Expert opinion on drug metabolism & toxicology. 2006. Daly Ann K, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS medicine. 2005. Reitsma Pieter H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood. 2005. Bodin Laurent, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenetics and genomics. 2005. Visser Loes E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thrombosis and haemostasis. 2004. Visser Loes E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Acenocoumarol stabilization is delayed in CYP2C93 carriers. Clinical pharmacology and therapeutics. 2004. Schalekamp Tom, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetics of acenocoumarol pharmacodynamics. Clinical pharmacology and therapeutics. 2004. Morin Sandrine, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics. 2004. Visser Loes E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Early overanticoagulation with acenocoumarol due to a genetic polymorphism of cytochrome P450 CYP2C9. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis. 2003. André-Kerneïs Elisabeth, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Warfarin and acenocoumarol dose requirements according to CYP2C9 genotyping in North-Italian patients. Journal of thrombosis and haemostasis : JTH. 2003. Spreafico M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clinical pharmacology and therapeutics. 2003. Thijssen Henk H W, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Major bleeding during combined treatment with indomethacin and low doses of acenocoumarol in a homozygous patient for 2C9*3 variant of cytochrome p-450 CYP2C9. Thrombosis and haemostasis. 2003. Zarza José. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Genetic and environmental risk factors for oral anticoagulant overdose. European journal of clinical pharmacology. 2003. Verstuyft C, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica. 2002. Tàssies Dolors, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Leu208Val and Ile181Leu variants of cytochrome P450 CYP2C9 are not related to the acenocoumarol dose requirement in a Spanish population. Blood. 2002. Zarza José, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood. 2002. Hermida José, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Early acenocoumarol overanticoagulation among cytochrome P450 2C9 poor metabolizers. Pharmacogenetics. 2001. Verstuyft C, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clinical pharmacology and therapeutics. 2001. Thijssen H H, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The possession of the CYP2C9*3 allele is associated with low dose requirement of acenocoumarol. Pharmacogenetics. 2000. Thijssen H H, et al. PubMed

LinkOuts

Web Resource:
Wikipedia
DrugBank:
DB01418
ChEBI:
53766
KEGG Drug:
D07064
PubChem Compound:
9052
PubChem Substance:
10321722
Drugs Product Database (DPD):
10383
Therapeutic Targets Database:
DAP000772

Clinical Trials

These are trials that mention acenocoumarol and are related to either pharmacogenetics or pharmacogenomics.

No trials loaded.

NURSA Datasets

provided by nursa.org

No NURSA datasets available.

Common Searches

Search PubMed
Search Medline Plus
Search PubChem
Search CTD

Sources for PharmGKB drug information: DrugBank, PubChem.