Chemical: Drug
tacrolimus

Available Guidelines

  1. CPIC Guideline for tacrolimus and CYP3A5
  2. DPWG Guideline for tacrolimus and CYP3A5

last updated 03/25/2015

1. CPIC Guideline for tacrolimus and CYP3A5

Summary

The CPIC dosing guideline for tacrolimus recommends increasing the starting dose by 1.5 to 2 times the recommended starting dose in patients who are CYP3A5 intermediate or extensive metabolizers, though total starting dose should not exceed 0.3 mg/kg/day. Therapeutic drug monitoring should also be used to guide dose adjustments.

Annotation

July 2015

Advanced online publication March 2015

  • Guidelines regarding the use of pharmacogenomic tests in dosing of tacrolimus have been published in Clinical Pharmacology and Therapeutics by the Clinical Pharmacogenetics Implementation Consortium (CPIC).

  • These guidelines are applicable to:

    • Patients undergoing kidney, heart, lung, or hematopoietic stem cell transplant.
    • Patients undergoing liver transplant where the donor and recipient CYP3A5 genotypes are identical.
  • Excerpts from the 2015 tacrolimus dosing guidelines:

    • "Blood concentrations of tacrolimus are strongly influenced by CYP3A5 genotype, with substantial evidence linking CYP3A5 genotype with phenotypic variability...In kidney, heart and lung transplant patients, over 50 studies have found that individuals with the CYP3A5*1/*1 or CYP3A5*1/*3 genotype have significantly lower dose-adjusted trough concentrations of tacrolimus as compared to those with the CYP3A5*3/*3 genotype..."
    • "Those recipients with an extensive or intermediate metabolizer phenotype will generally require an increased dose of tacrolimus to achieve therapeutic drug concentrations. We recommend a dose 1.5 - 2 times higher than standard dosing, but not to exceed 0.3 mg/kg/day, followed by [therapeutic drug monitoring] given the risk of arterial vasoconstriction, hypertension and nephrotoxicity that can occur with supratherapeutic tacrolimus concentrations."
  • Download and read:

Table 1: Dosing recommendations for tacrolimus based on CYP3A5 phenotype:

Adapted from Tables 1 and 2 of the 2015 guideline manuscript.

Likely phenotype aGenotypesExamples of diplotypes bImplications for tacrolimus pharmacologic measuresTherapeutic Recommendations cClassification of recommendations e
Extensive metabolizer (CYP3A5 expresser)An individual carrying two functional alleles*1/*1Lower dose-adjusted trough concentrations of tacrolimus and decreased chance of achieving target tacrolimus concentrationsIncrease starting dose 1.5 to 2 times recommended starting dose d. Total starting dose should not exceed 0.3mg/kg/day. Use therapeutic drug monitoring to guide dose adjustmentsStrong
Intermediate metabolizer (CYP3A5 expresser)An individual carrying one functional allele and one non-functional allele*1/*3, *1/*6, *1/*7Lower dose-adjusted trough concentrations of tacrolimus and decreased chance of achieving target tacrolimus concentrationsIncrease starting dose 1.5 to 2 times recommended starting dose d. Total starting dose should not exceed 0.3mg/kg/day. Use therapeutic drug monitoring to guide dose adjustmentsStrong
Poor metabolizer (CYP3A5 non-expresser)An individual carrying two non-functional alleles*3/*3, *6/*6, *7/*7, *3/*6, *3/*7, *6/*7Higher (“normal”) dose-adjusted trough concentrations of tacrolimus and increased chance of achieving target tacrolimus concentrationsInitiate therapy with standard recommended dose. Use therapeutic drug monitoring to guide dose adjustmentsStrong

a Typically with other CYP enzymes, an extensive metabolizer would be classified as a “normal” metabolizer, and therefore, the drug dose would not change based on the patient’s genotype. However, in the case of CYP3A5 and tacrolimus, a CYP3A5 expresser (i.e. CYP3A5 extensive metabolizer or intermediate metabolizer) would require a higher recommended starting dose and the CYP3A5 non-expresser (i.e. poor metabolizer) would require the standard recommended starting dose.

b Additional rare variants such as CYP3A5*2, *8, and *9 may be found which are of unknown functional significance. However, if a copy of *1 is present, expected phenotype would be intermediate metabolizer.

c This recommendation includes the use of tacrolimus in kidney, heart, lung and hematopoietic stem cell transplant patients, and liver transplant patients where the donor and recipient genotypes are identical.

d Further dose adjustments or selection of alternative therapy may be necessary due to other clinical factors (e.g., medication interactions, or hepatic function)

e Rating scheme is described in 2015 Supplement.


last updated 02/07/2014

2. DPWG Guideline for tacrolimus and CYP3A5

Summary

There is evidence to support an interaction between tacrolimus and CYP3A5, however, there are no dosing recommendations at this time.

Annotation

The Royal Dutch Pharmacists Association - Pharmacogenetics Working Group has evaluated therapeutic dose recommendations for tacrolimus based on CYP3A5 genotype [Article:21412232]. They found evidence to support an interaction between tacrolimus and CYP3A5. However, they make no dosing recommendations at this time, due to fact that "in Dutch transplantation hospitals the tacrolimus dose is titrated in response to therapeutic drug monitoring."

GenotypeTherapeutic Dose RecommendationLevel of EvidenceClinical Relevance
CYP3A5 *1/*1NonePublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Clinical effect (S): short-lived discomfort (< 48 hr) without permanent injury: e.g. reduced decrease in resting heart rate; reduction in exercise tachycardia; decreased pain relief from oxycodone; ADE resulting from increased bioavailability of atomoxetine (decreased appetite, insomnia, sleep disturbance etc); neutropenia > 1.5x109/l; leucopenia > 3.0x109/l; thrombocytopenia > 75x109/l; moderate diarrhea not affecting daily activities; reduced glucose increase following oral glucose tolerance test.
CYP3A5 *1/*3NonePublished controlled studies of good quality* relating to phenotyped and/or genotyped patients or healthy volunteers, and having relevant pharmacokinetic or clinical endpoints.Clinical effect (S): long-standing discomfort (> 168 hr), permanent symptom or invalidating injury e.g. failure of prophylaxis of atrial fibrillation; venous thromboembolism; decreased effect of clopidogrel on inhibition of platelet aggregation; ADE resulting from increased bioavailability of phenytoin; INR > 6.0; neutropenia 0.5-1.0x109/l; leucopenia 1.0-2.0x109/l; thrombocytopenia 25-50x109/l; severe diarrhea.
  • *See Methods or [Article:18253145] for definition of "good quality."
  • S: statistically significant difference.



Clinical Variants that meet the highest level of criteria, manually curated by PharmGKB, are shown below.

To see more Clinical Variants with lower levels of criteria, click the button at the bottom of the page.

Disclaimer: The PharmGKB's clinical annotations reflect expert consensus based on clinical evidence and peer-reviewed literature available at the time they are written and are intended only to assist clinicians in decision-making and to identify questions for further research. New evidence may have emerged since the time an annotation was submitted to the PharmGKB. The annotations are limited in scope and are not applicable to interventions or diseases that are not specifically identified.

The annotations do not account for individual variations among patients, and cannot be considered inclusive of all proper methods of care or exclusive of other treatments. It remains the responsibility of the health-care provider to determine the best course of treatment for a patient. Adherence to any guideline is voluntary, with the ultimate determination regarding its application to be made solely by the clinician and the patient. PharmGKB assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of the PharmGKB clinical annotations, or for any errors or omissions.

? = Mouse-over for quick help

The table below contains information about pharmacogenomic variants on PharmGKB. Please follow the link in the "Variant" column for more information about a particular variant. Each link in the "Variant" column leads to the corresponding PharmGKB Variant Page. The Variant Page contains summary data, including PharmGKB manually curated information about variant-drug pairs based on individual PubMed publications. The PMIDs for these PubMed publications can be found on the Variant Page.

The tags in the first column of the table indicate what type of information can be found on the corresponding Variant Page.

Links in the "Gene" column lead to PharmGKB Gene Pages.

List of all variant annotations for tacrolimus

Gene ? Variant?
(147)
Alternate Names ? Chemicals ? Alleles ?
(+ chr strand)
Function ? Amino Acid?
Translation
No VIP available CA VA CYP2C19 *1 N/A N/A N/A
No VIP available CA VA CYP2C19 *2 N/A N/A N/A
No VIP available No VIP available VA CYP2C8 *1A N/A N/A N/A
No VIP available No VIP available VA CYP2C8 *3 N/A N/A N/A
No VIP available CA VA CYP3A4 *1 N/A N/A N/A
No VIP available No VIP available VA CYP3A4 *1B N/A N/A N/A
No VIP available CA VA CYP3A4 *1G N/A N/A N/A
No VIP available No VIP available VA CYP3A4 *18B N/A N/A N/A
No VIP available No VIP available VA CYP3A4 *22 N/A N/A N/A
No VIP available No VIP available VA CYP3A5 *1A N/A N/A N/A
No VIP available No VIP available VA CYP3A5 *3A N/A N/A N/A
No VIP available No VIP available VA CYP3A5 *6 N/A N/A N/A
No VIP available No VIP available VA CYP3A5 *7 N/A N/A N/A
No VIP available CA VA
rs10264272 NC_000007.13:g.99262835C>T, NC_000007.14:g.99665212C>T, NG_007938.1:g.19787G>A, NM_000777.4:c.624G>A, NM_001291829.1:c.285G>A, NM_001291830.1:c.594G>A, NP_000768.1:p.Lys208=, NP_001278758.1:p.Lys95=, NP_001278759.1:p.Lys198=, NR_033807.2:n.1273G>A, NR_033808.1:n.1226G>A, NR_033809.1:n.986G>A, NR_033810.1:n.1226G>A, NR_033811.1:n.975G>A, NR_033812.1:n.867G>A, XM_005250169.1:c.594G>A, XM_005250170.1:c.285G>A, XM_005250171.1:c.285G>A, XM_005250172.1:c.285G>A, XM_005250173.1:c.84G>A, XM_005250198.1:c.806-11992C>T, XM_006715859.2:c.624G>A, XM_011515843.1:c.285G>A, XM_011515844.1:c.285G>A, XM_011515845.1:c.84G>A, XM_011515846.1:c.84G>A, XM_011515847.1:c.84G>A, XM_011515909.1:c.806-3883C>T, XP_005250226.1:p.Lys198=, XP_005250227.1:p.Lys95=, XP_005250228.1:p.Lys95=, XP_005250229.1:p.Lys95=, XP_005250230.1:p.Lys28=, XP_006715922.1:p.Lys208=, XP_011514145.1:p.Lys95=, XP_011514146.1:p.Lys95=, XP_011514147.1:p.Lys28=, XP_011514148.1:p.Lys28=, XP_011514149.1:p.Lys28=, XR_927402.1:n.1466+41032C>T, rs58867275
C > -
C > T
SNP
K208K
No VIP available CA VA
rs1042597 NC_000002.11:g.234526871C>G, NC_000002.12:g.233618225C>G, NG_002601.2:g.33482C>G, NM_019076.4:c.518C>G, NP_061949.3:p.Ala173Gly, rs117092283, rs13387262, rs17862843, rs2071043, rs56696602
C > G
SNP
A173G
rs1045642 NC_000007.13:g.87138645A>G, NC_000007.14:g.87509329A>G, NG_011513.1:g.208920T>C, NM_000927.4:c.3435T>C, NP_000918.2:p.Ile1145=, rs10239679, rs11568726, rs117328163, rs17210003, rs2229108, rs386513066, rs60023214, rs9690664
A > G
SNP
I1145I
No VIP available CA VA
rs1057868 NC_000007.13:g.75615006C>T, NC_000007.14:g.75985688C>T, NG_008930.1:g.75587C>T, NM_000941.2:c.1508C>T, NP_000932.3:p.Ala503Val, NW_003871064.1:g.3514924C>T, XM_005250459.1:c.1508C>T, XM_005250460.1:c.1205C>T, XM_005250461.1:c.932C>T, XM_005277600.1:c.1508C>T, XM_005277601.1:c.1205C>T, XM_005277602.1:c.932C>T, XP_005250516.1:p.Ala503Val, XP_005250517.1:p.Ala402Val, XP_005250518.1:p.Ala311Val, XP_005277657.1:p.Ala503Val, XP_005277658.1:p.Ala402Val, XP_005277659.1:p.Ala311Val, rs17840495, rs17846082, rs17859083, rs3198400, rs57699079
C > T
SNP
A503V
No VIP available CA VA
rs11265572 NC_000001.10:g.161213063G>T, NC_000001.11:g.161243273G>T
G > T
SNP
No VIP available CA VA
rs1128503 NC_000007.13:g.87179601A>G, NC_000007.14:g.87550285A>G, NG_011513.1:g.167964T>C, NM_000927.4:c.1236T>C, NP_000918.2:p.Gly412=, rs116989428, rs17276907, rs2032587, rs2229105, rs28365046, rs386518005, rs58257317
A > G
SNP
G412G
No VIP available No Clinical Annotations available VA
rs11584174 NC_000001.10:g.161212453C>T, NC_000001.11:g.161242663C>T, NG_029113.1:g.548G>A, rs57213059
C > T
SNP
No VIP available No Clinical Annotations available VA
rs12333983 NC_000007.13:g.99354114T>A, NC_000007.14:g.99756491T>A, NG_008421.1:g.32695A>T, NM_001202855.2:c.*1642A>T, NM_017460.5:c.*1642A>T, XM_011515841.1:c.*1642A>T, XM_011515842.1:c.*1642A>T, rs61591143
T > A
SNP
No VIP available No Clinical Annotations available VA
rs15524 NC_000007.13:g.99245914A>G, NC_000007.14:g.99648291A>G, NG_007938.1:g.36708T>C, NM_000777.4:c.*14T>C, NM_001291829.1:c.*14T>C, NM_001291830.1:c.*14T>C, NR_033807.2:n.3257T>C, NR_033808.1:n.2125T>C, NR_033809.1:n.1885T>C, XM_005250169.1:c.*14T>C, XM_005250170.1:c.*14T>C, XM_005250171.1:c.*14T>C, XM_005250172.1:c.*14T>C, XM_005250173.1:c.*14T>C, XM_005250197.1:c.*768A>G, XM_005250198.1:c.805+24111A>G, XM_011515843.1:c.*14T>C, XM_011515844.1:c.*14T>C, XM_011515845.1:c.*14T>C, XM_011515846.1:c.*14T>C, XM_011515847.1:c.*14T>C, XM_011515909.1:c.806-20804A>G, XM_011515910.1:c.*768A>G, XR_927402.1:n.1466+24111A>G, rs10372852, rs17161789, rs3173576, rs59358441
A > -
A > G
SNP
No VIP available No Clinical Annotations available VA
rs165599 NC_000022.10:g.19956781G>A, NC_000022.11:g.19969258G>A, NG_011526.1:g.32519G>A, NG_023326.1:g.52529C>T, NM_000754.3:c.*522G>A, NM_001135161.1:c.*522G>A, NM_001135162.1:c.*522G>A, NM_007310.2:c.*522G>A, XM_005261229.1:c.*522G>A, XM_005261242.1:c.2764-2049C>T, XM_006724243.1:c.2782-2049C>T, XM_006724246.2:c.2536-2049C>T, XM_011529886.1:c.*522G>A, XM_011530179.1:c.2749-2049C>T, XM_011530182.1:c.1348-2049C>T, rs58966983
G > A
SNP
No VIP available No Clinical Annotations available VA
rs1799752 NC_000017.10:g.61565890_61565891insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NC_000017.10:g.61565890_61565891insG, NC_000017.11:g.63488529_63488530insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NC_000017.11:g.63488529_63488530insG, NG_011648.1:g.16457_16458insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NG_011648.1:g.16457_16458insG, NM_000789.3:c.2306-119_2306-118insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NM_000789.3:c.2306-119_2306-118insG, NM_001178057.1:c.584-119_584-118insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NM_001178057.1:c.584-119_584-118insG, NM_152830.2:c.584-119_584-118insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, NM_152830.2:c.584-119_584-118insG, XM_005257110.1:c.1757-119_1757-118insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, XM_005257110.1:c.1757-119_1757-118insG, XM_006721737.2:c.644-119_644-118insATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC, XM_006721737.2:c.644-119_644-118insG
- > ATACAGTCACTTTTTTTTTTTTTTTGAGACGGAGTCTCGCTCTGTCGCCC
- > G
indel
No VIP available CA VA
rs1800871 NC_000001.10:g.206946634A>G, NC_000001.11:g.206773289A>G, NG_012088.1:g.4206T>C, NM_000572.2:c.-854T>C, XM_011509506.1:c.-854T>C, rs3021097, rs36213473, rs52832962
A > G
SNP
No VIP available CA VA
rs1800872 NC_000001.10:g.206946407T>G, NC_000001.11:g.206773062T>G, NG_012088.1:g.4433A>C, NM_000572.2:c.-627A>C, XM_011509506.1:c.-627A>C, rs36213471, rs61491075
T > G
SNP
No VIP available CA VA
rs1800896 NC_000001.10:g.206946897T>C, NC_000001.11:g.206773552T>C, NG_012088.1:g.3943A>G, NM_000572.2:c.-1117A>G, XM_011509506.1:c.-1001-116A>G, rs36213835, rs386545607, rs59915840
T > C
SNP
No VIP available No Clinical Annotations available VA
rs1851426 NC_000007.13:g.99382936A>G, NC_000007.14:g.99785313A>G, NG_008421.1:g.3873T>C, NM_001202855.2:c.-1232T>C, NM_017460.5:c.-1232T>C, XM_011515841.1:c.-1232T>C, XM_011515842.1:c.-1232T>C, rs56476282, rs57950778
A > G
SNP
No VIP available No Clinical Annotations available VA
rs187238 NC_000011.10:g.112164265C>G, NC_000011.9:g.112034988C>G, NG_028143.1:g.4853G>C, NM_001243211.1:c.-368G>C, NM_001562.3:c.-368G>C, XM_005271612.1:c.-24-4980C>G, XM_011542805.1:c.-389G>C, XM_011542806.1:c.-389G>C, rs17281504, rs3740967, rs57513680
C > G
SNP
No VIP available CA VA
rs1927907 NC_000009.11:g.120472764C>T, NC_000009.12:g.117710486C>T, NG_011475.1:g.11305C>T, NM_003266.3:c.140+1757C>T, NM_138554.3:c.260+1757C>T, NM_138554.4:c.260+1757C>T, NM_138557.2:c.-340-1903C>T, XM_005252182.1:c.254+1757C>T
C > T
SNP
No VIP available CA VA
rs1946518 NC_000011.10:g.112164735T>G, NC_000011.9:g.112035458T>G, NG_028143.1:g.4383A>C, NM_001243211.1:c.-838A>C, NM_001562.3:c.-838A>C, XM_005271612.1:c.-24-4510T>G, XM_011542805.1:c.-859A>C, XM_011542806.1:c.-859A>C, rs57159524
T > G
SNP
rs2032582 NC_000007.13:g.87160618A>C, NC_000007.13:g.87160618A>T, NC_000007.14:g.87531302A>C, NC_000007.14:g.87531302A>T, NG_011513.1:g.186947T>A, NG_011513.1:g.186947T>G, NM_000927.4:c.2677T>A, NM_000927.4:c.2677T>G, NP_000918.2:p.Ser893Ala, NP_000918.2:p.Ser893Thr, rs10228331, rs2229106, rs386553610, rs57135550, rs9641018
A > C
SNP
S893A
No VIP available CA VA
rs2066844 NC_000016.10:g.50712015C>T, NC_000016.9:g.50745926C>T, NG_007508.1:g.19877C>T, NM_001293557.1:c.2023C>T, NM_022162.1:c.2104C>T, NM_022162.2:c.2104C>T, NP_001280486.1:p.Arg675Trp, NP_071445.1:p.Arg702Trp, XM_005256084.1:c.2023C>T, XM_005256084.2:c.2023C>T, XM_006721242.2:c.2023C>T, XM_006721243.2:c.2023C>T, XM_011523257.1:c.1600C>T, XM_011523258.1:c.1600C>T, XM_011523259.1:c.1438C>T, XM_011523260.1:c.2023C>T, XM_011523261.1:c.2023C>T, XP_005256141.1:p.Arg675Trp, XP_006721305.1:p.Arg675Trp, XP_006721306.1:p.Arg675Trp, XP_011521559.1:p.Arg534Trp, XP_011521560.1:p.Arg534Trp, XP_011521561.1:p.Arg480Trp, XP_011521562.1:p.Arg675Trp, XP_011521563.1:p.Arg675Trp, XR_429725.2:n.2113C>T, XR_429726.2:n.2113C>T, XR_933387.1:n.2113C>T, rs17221641, rs17860491, rs58650267
C > T
SNP
R675W
No VIP available No Clinical Annotations available VA
rs2167270 NC_000007.13:g.127881349G>A, NC_000007.14:g.128241296G>A, NG_007450.1:g.5019G>A, NM_000230.2:c.-39G>A, XM_005250340.1:c.-39G>A, XM_005250340.3:c.-39G>A, rs17533430, rs36219625, rs56514852
G > A
SNP
No VIP available No Clinical Annotations available VA
rs2231142 NC_000004.11:g.89052323G>T, NC_000004.12:g.88131171G>T, NG_032067.2:g.105152C>A, NM_001257386.1:c.421C>A, NM_004827.2:c.421C>A, NP_001244315.1:p.Gln141Lys, NP_004818.2:p.Gln141Lys, XM_005263354.1:c.421C>A, XM_005263354.2:c.421C>A, XM_005263355.1:c.421C>A, XM_005263355.2:c.421C>A, XM_005263356.1:c.421C>A, XM_005263356.2:c.421C>A, XM_011532420.1:c.421C>A, XP_005263411.1:p.Gln141Lys, XP_005263412.1:p.Gln141Lys, XP_005263413.1:p.Gln141Lys, XP_011530722.1:p.Gln141Lys, rs12721641, rs28365035, rs3736117, rs52809243, rs58973676
G > T
SNP
Q141K
No VIP available CA VA
rs2237895 NC_000011.10:g.2835964A>C, NC_000011.9:g.2857194A>C, NG_008935.1:g.395974A>C, NM_000218.2:c.1795-11803A>C, NM_181798.1:c.1414-11803A>C, NR_040711.2:n.1688-11803A>C, NT_187585.1:g.68142A>C
A > C
SNP
No VIP available No Clinical Annotations available VA
rs2239393 NC_000022.10:g.19950428A>G, NC_000022.11:g.19962905A>G, NG_011526.1:g.26166A>G, NM_000754.3:c.289+90A>G, NM_001135161.1:c.289+90A>G, NM_001135162.1:c.289+90A>G, NM_007310.2:c.139+90A>G, NR_039918.1:n.-848A>G, XM_005261229.1:c.289+90A>G, XM_011529885.1:c.403+90A>G, XM_011529886.1:c.403+90A>G, XM_011529887.1:c.289+90A>G, XM_011529888.1:c.289+90A>G, XM_011529889.1:c.289+90A>G, XM_011529890.1:c.289+90A>G, XM_011529891.1:c.289+90A>G, rs58361251
A > G
SNP
No VIP available No Clinical Annotations available VA
rs2242480 NC_000007.13:g.99361466C>T, NC_000007.14:g.99763843C>T, NG_008421.1:g.25343G>A, NM_001202855.2:c.1023+12G>A, NM_017460.5:c.1026+12G>A, XM_011515841.1:c.1026+12G>A, XM_011515842.1:c.1023+12G>A, rs10364667, rs12721630, rs17161804, rs28969389, rs59491337, rs72494459, rs9655766
C > T
SNP
No VIP available No Clinical Annotations available VA
rs2257401 NC_000007.13:g.99306685C>G, NC_000007.14:g.99709062G>C, NG_007983.1:g.31137C=, NG_007983.1:g.31137C>G, NM_000765.4:c.1226C=, NM_000765.4:c.1226C>G, NM_001256497.2:c.1226C=, NM_001256497.2:c.1226C>G, NP_000756.3:p.Thr409=, NP_000756.3:p.Thr409Arg, NP_001243426.2:p.Thr409=, NP_001243426.2:p.Thr409Arg, XM_005250168.1:c.1223G>C, XP_005250225.1:p.Arg408Thr, XR_927402.1:n.1467-14413G>C, rs11536558, rs57389434
C > C
SNP
T409R
No VIP available CA VA
rs2276707 NC_000003.11:g.119534153C>T, NC_000003.12:g.119815306C>T, NG_011856.1:g.39823C>T, NM_003889.3:c.938-17C>T, NM_022002.2:c.1055-17C>T, NM_033013.2:c.827-17C>T, XM_005247866.1:c.773-17C>T, rs60905954
C > G
C > T
SNP
No VIP available No Clinical Annotations available VA
rs2278293 NC_000007.13:g.128040752C>T, NC_000007.14:g.128400698C>T, NG_009194.1:g.14285G>A, NM_000883.3:c.579+119G>A, NM_001102605.1:c.549+119G>A, NM_001142573.1:c.324+119G>A, NM_001142574.1:c.309+134G>A, NM_001142575.1:c.250-159G>A, NM_001142576.1:c.480+119G>A, NM_001304521.1:c.372+119G>A, NM_183243.2:c.471+119G>A, XM_005250313.1:c.372+119G>A, XM_005250314.1:c.348+119G>A, XM_005250315.1:c.324+119G>A, XM_005250316.1:c.-62+119G>A, XM_006715967.1:c.579+119G>A, XM_006715968.1:c.549+119G>A, XM_006715969.1:c.471+119G>A, XM_006715970.2:c.372+119G>A, XM_006715971.1:c.348+119G>A, XM_011516156.1:c.-220G>A, XM_011516157.1:c.-220G>A, rs10348032, rs60861084
C > T
SNP
No VIP available No Clinical Annotations available VA
rs2278294 NC_000007.13:g.128040699C>T, NC_000007.14:g.128400645C>T, NG_009194.1:g.14338G>A, NM_000883.3:c.580-106G>A, NM_001102605.1:c.550-106G>A, NM_001142573.1:c.325-106G>A, NM_001142574.1:c.310-106G>A, NM_001142575.1:c.250-106G>A, NM_001142576.1:c.481-106G>A, NM_001304521.1:c.373-106G>A, NM_183243.2:c.472-106G>A, XM_005250313.1:c.373-106G>A, XM_005250314.1:c.349-106G>A, XM_005250315.1:c.325-106G>A, XM_005250316.1:c.-61-106G>A, XM_006715967.1:c.580-106G>A, XM_006715968.1:c.550-106G>A, XM_006715969.1:c.472-106G>A, XM_006715970.2:c.373-106G>A, XM_006715971.1:c.349-106G>A, XM_011516156.1:c.-167G>A, XM_011516157.1:c.-167G>A, rs386563394, rs58322800
C > T
SNP
No VIP available No Clinical Annotations available VA
rs2501870 NC_000001.10:g.161212569G>A, NC_000001.11:g.161242779G>A, NG_029113.1:g.432C>T, rs386568341, rs56625284, rs56838883, rs7542374
G > A
SNP
No VIP available No Clinical Annotations available VA
rs2687116 NC_000007.13:g.99365943C>A, NC_000007.14:g.99768320C>A, NG_008421.1:g.20866G>T, NM_001202855.2:c.670+34G>T, NM_017460.5:c.670+34G>T, XM_011515841.1:c.670+34G>T, XM_011515842.1:c.670+34G>T, rs17161901, rs59381366
C > A
SNP
No VIP available CA VA
rs2740574 NC_000007.13:g.99382096C>T, NC_000007.14:g.99784473C>T, NG_008421.1:g.4713G>A, NM_001202855.2:c.-392G>A, NM_017460.5:c.-392G>A, XM_011515841.1:c.-392G>A, XM_011515842.1:c.-392G>A, rs3176920, rs36231114, rs59393892
C > T
SNP
No VIP available CA No Variant Annotations available
rs28371759 NC_000007.13:g.99361626A>G, NC_000007.14:g.99764003A>G, NG_008421.1:g.25183T>C, NM_001202855.2:c.875T>C, NM_017460.5:c.878T>C, NP_001189784.1:p.Leu292Pro, NP_059488.2:p.Leu293Pro, XM_011515841.1:c.878T>C, XM_011515842.1:c.875T>C, XP_011514143.1:p.Leu293Pro, XP_011514144.1:p.Leu292Pro, rs386574775, rs60608883
A > G
SNP
L292P
No VIP available No Clinical Annotations available VA
rs2868177 NC_000007.13:g.75589903A>G, NC_000007.14:g.75960585A>G, NG_008930.1:g.50484A>G, NM_000941.2:c.188+6405A>G, NW_003871064.1:g.3489821A>G, XM_005250459.1:c.188+6405A>G, XM_005250461.1:c.-264+6405A>G, XM_005277600.1:c.188+6405A>G, XM_005277602.1:c.-264+6405A>G, rs10375158, rs59093849, rs61116122
A > G
SNP
No VIP available No Clinical Annotations available VA
rs3213619 NC_000007.13:g.87230193A>G, NC_000007.14:g.87600877A>G, NG_011513.1:g.117372T>C, NM_000927.4:c.-129T>C, rs17249446, rs60679736
A > G
SNP
No VIP available CA VA
rs35599367 NC_000007.13:g.99366316G>A, NC_000007.14:g.99768693G>A, NG_008421.1:g.20493C>T, NM_001202855.2:c.522-191C>T, NM_017460.5:c.522-191C>T, XM_011515841.1:c.522-191C>T, XM_011515842.1:c.522-191C>T, rs45581939, rs62471940
G > A
SNP
No VIP available CA VA
rs3814055 NC_000003.11:g.119500035C>T, NC_000003.12:g.119781188C>T, NG_011856.1:g.5705C>T, NM_003889.3:c.-1135C>T, NM_022002.2:c.-1570C>T, NM_033013.2:c.-1135C>T, XM_005247866.1:c.-1300C>T, rs60667929
C > T
SNP
No VIP available CA VA
rs41303343 NC_000007.13:g.99250393_99250394insA, NC_000007.14:g.99652770_99652771insA, NG_007938.1:g.32228_32229insT, NM_000777.4:c.1035_1036insT, NM_001291829.1:c.696_697insT, NM_001291830.1:c.1005_1006insT, NP_000768.1:p.Thr346Tyrfs, NP_001278758.1:p.Thr233Tyrfs, NP_001278759.1:p.Thr336Tyrfs, NR_033807.2:n.2769_2770insT, NR_033808.1:n.1637_1638insT, NR_033809.1:n.1397_1398insT, XM_005250169.1:c.1005_1006insT, XM_005250170.1:c.696_697insT, XM_005250171.1:c.696_697insT, XM_005250172.1:c.696_697insT, XM_005250173.1:c.495_496insT, XM_005250198.1:c.806-24434_806-24433insA, XM_011515843.1:c.696_697insT, XM_011515844.1:c.696_697insT, XM_011515845.1:c.495_496insT, XM_011515846.1:c.495_496insT, XM_011515847.1:c.495_496insT, XM_011515909.1:c.806-16325_806-16324insA, XP_005250226.1:p.Thr336Tyrfs, XP_005250227.1:p.Thr233Tyrfs, XP_005250228.1:p.Thr233Tyrfs, XP_005250229.1:p.Thr233Tyrfs, XP_005250230.1:p.Thr166Tyrfs, XP_011514145.1:p.Thr233Tyrfs, XP_011514146.1:p.Thr233Tyrfs, XP_011514147.1:p.Thr166Tyrfs, XP_011514148.1:p.Thr166Tyrfs, XP_011514149.1:p.Thr166Tyrfs, XR_927402.1:n.1466+28590_1466+28591insA, rs146933882, rs371634789, rs57622522
- > -
- > A
indel
T346Y
No VIP available CA VA
rs4253728 NC_000022.10:g.46610067G>A, NC_000022.11:g.46214170G>A, NG_012204.1:g.68569G>A, NM_001001928.2:c.209-1003G>A, NM_005036.4:c.209-1003G>A, XM_005261653.1:c.209-1003G>A, XM_005261654.1:c.209-1003G>A, XM_005261655.1:c.209-1003G>A, XM_005261655.2:c.209-1003G>A, XM_005261656.1:c.209-1003G>A, XM_005261656.2:c.209-1003G>A, XM_005261657.1:c.209-1003G>A, XM_005261658.1:c.209-1003G>A, XM_006724269.2:c.209-1003G>A, XM_006724270.2:c.209-1003G>A, XM_011530239.1:c.209-1003G>A, XM_011530240.1:c.209-1003G>A, XM_011530241.1:c.209-1003G>A, XM_011530242.1:c.209-1003G>A, XM_011530243.1:c.209-1003G>A, XM_011530244.1:c.-198-1003G>A, XM_011530245.1:c.-198-1003G>A, XR_244379.1:n.432-1003G>A, XR_937869.1:n.524-1003G>A, XR_937870.1:n.523-1003G>A, rs17242080, rs56473198, rs56722050
G > A
SNP
No VIP available No Clinical Annotations available VA
rs4646312 NC_000022.10:g.19948337T>C, NC_000022.11:g.19960814T>C, NG_011526.1:g.24075T>C, NM_000754.3:c.-91-385T>C, NM_001135161.1:c.-91-385T>C, NM_001135162.1:c.-91-385T>C, NM_007310.2:c.-1863T>C, XM_005261229.1:c.-385-385T>C, XM_011529885.1:c.24-385T>C, XM_011529886.1:c.24-385T>C, XM_011529887.1:c.-91-385T>C, XM_011529888.1:c.-91-385T>C, XM_011529889.1:c.-91-385T>C, XM_011529890.1:c.-385-385T>C, XM_011529891.1:c.-385-385T>C, rs56459767, rs56879747, rs57504087
T > C
SNP
No VIP available CA VA
rs4646437 NC_000007.13:g.99365083G>A, NC_000007.14:g.99767460G>A, NG_008421.1:g.21726C>T, NM_001202855.2:c.671-205C>T, NM_017460.5:c.671-202C>T, XM_011515841.1:c.671-202C>T, XM_011515842.1:c.671-205C>T, rs386594232, rs57997883
G > A
SNP
No VIP available No Clinical Annotations available VA
rs4646457 NC_000007.13:g.99245080A>C, NC_000007.14:g.99647457A>C, NG_007938.1:g.37542T>G, XM_005250197.1:c.806-14A>C, XM_005250198.1:c.805+23277A>C, XM_011515909.1:c.806-21638A>C, XM_011515910.1:c.806-14A>C, XR_927402.1:n.1466+23277A>C, rs10369117, rs59982591
A > C
SNP
No VIP available No Clinical Annotations available VA
rs4646458 NC_000007.13:g.99245013T>G, NC_000007.14:g.99647390T>G, NG_007938.1:g.37609A>C, XM_005250197.1:c.806-81T>G, XM_005250198.1:c.805+23210T>G, XM_011515909.1:c.806-21705T>G, XM_011515910.1:c.806-81T>G, XR_927402.1:n.1466+23210T>G, rs10356239, rs117106000, rs61593903
T > G
SNP
No VIP available No Clinical Annotations available VA
rs4680 NC_000022.10:g.19951271G>A, NC_000022.11:g.19963748G>A, NG_011526.1:g.27009G>A, NM_000754.3:c.472G>A, NM_001135161.1:c.472G>A, NM_001135162.1:c.472G>A, NM_007310.2:c.322G>A, NP_000745.1:p.Val158Met, NP_001128633.1:p.Val158Met, NP_001128634.1:p.Val158Met, NP_009294.1:p.Val108Met, NR_039918.1:n.-5G>A, XM_005261229.1:c.472G>A, XM_011529885.1:c.586G>A, XM_011529886.1:c.586G>A, XM_011529887.1:c.472G>A, XM_011529888.1:c.472G>A, XM_011529889.1:c.472G>A, XM_011529890.1:c.472G>A, XM_011529891.1:c.472G>A, XP_005261286.1:p.Val158Met, XP_011528187.1:p.Val196Met, XP_011528188.1:p.Val196Met, XP_011528189.1:p.Val158Met, XP_011528190.1:p.Val158Met, XP_011528191.1:p.Val158Met, XP_011528192.1:p.Val158Met, XP_011528193.1:p.Val158Met, rs1131157, rs11544671, rs165688, rs17295216, rs17349704, rs17818178, rs17849308, rs17850006, rs2070104, rs3177905, rs3190784, rs3747070, rs58002978
G > A
SNP
V158M
No VIP available CA VA
rs4823613 NC_000022.10:g.46598307A>G, NC_000022.11:g.46202410A>G, NG_012204.1:g.56809A>G, NM_001001928.2:c.208+3819A>G, NM_005036.4:c.208+3819A>G, XM_005261653.1:c.208+3819A>G, XM_005261654.1:c.208+3819A>G, XM_005261655.1:c.208+3819A>G, XM_005261655.2:c.208+3819A>G, XM_005261656.1:c.208+3819A>G, XM_005261656.2:c.208+3819A>G, XM_005261657.1:c.208+3819A>G, XM_005261658.1:c.208+3819A>G, XM_006724269.2:c.208+3819A>G, XM_006724270.2:c.208+3819A>G, XM_011530239.1:c.208+3819A>G, XM_011530240.1:c.208+3819A>G, XM_011530241.1:c.208+3819A>G, XM_011530242.1:c.208+3819A>G, XM_011530243.1:c.208+3819A>G, XM_011530244.1:c.-199+3819A>G, XM_011530245.1:c.-199+3819A>G, XR_244379.1:n.431+3819A>G, XR_937869.1:n.523+3819A>G, XR_937870.1:n.522+3819A>G, rs5767571, rs58091507, rs74281148
A > G
SNP
No VIP available CA VA
rs4844880 NC_000001.10:g.209870916A>T, NC_000001.11:g.209697571A>T, NG_012081.1:g.16367A>T, NM_001206741.1:c.-48-7324A>T, NM_181755.2:c.-26-7346A>T, NR_134509.1:n.96+26459T>A, NR_134510.1:n.67-34510T>A, XR_922542.1:n.3235-21038T>A, XR_922543.1:n.3225+26459T>A, XR_922547.1:n.3091-34510T>A, XR_922549.1:n.125-34510T>A, rs58529811
A > T
SNP
No VIP available CA VA
rs4986910 NC_000007.13:g.99358524A>G, NC_000007.14:g.99760901A>G, NG_008421.1:g.28285T>C, NM_001202855.2:c.1331T>C, NM_017460.5:c.1334T>C, NP_001189784.1:p.Met444Thr, NP_059488.2:p.Met445Thr, XM_011515841.1:c.1427T>C, XM_011515842.1:c.1424T>C, XP_011514143.1:p.Met476Thr, XP_011514144.1:p.Met475Thr, rs386597005, rs60835115
A > G
SNP
M444T
No VIP available CA VA
rs5030952 NC_000002.11:g.241542703C>T, NC_000002.12:g.240603286C>T
C > T
SNP
No VIP available No Clinical Annotations available VA
rs55802895 NC_000001.10:g.161212743C>T, NC_000001.11:g.161242953C>T, NG_029113.1:g.258G>A
C > T
SNP
No VIP available CA VA
rs5744247 NC_000011.10:g.112155433G>C, NC_000011.9:g.112026156G>C, NG_028143.1:g.13685C>G, NM_001243211.1:c.-8-372C>G, NM_001562.3:c.-8-372C>G, XM_005271612.1:c.-24-13812G>C, XM_011542805.1:c.-29-351C>G, XM_011542806.1:c.-29-351C>G
G > C
SNP
No VIP available No Clinical Annotations available VA
rs6267 NC_000022.10:g.19950263G>T, NC_000022.11:g.19962740G>T, NG_011526.1:g.26001G>T, NM_000754.3:c.214G>T, NM_001135161.1:c.214G>T, NM_001135162.1:c.214G>T, NM_007310.2:c.64G>T, NP_000745.1:p.Ala72Ser, NP_001128633.1:p.Ala72Ser, NP_001128634.1:p.Ala72Ser, NP_009294.1:p.Ala22Ser, NR_039918.1:n.-1013G>T, XM_005261229.1:c.214G>T, XM_011529885.1:c.328G>T, XM_011529886.1:c.328G>T, XM_011529887.1:c.214G>T, XM_011529888.1:c.214G>T, XM_011529889.1:c.214G>T, XM_011529890.1:c.214G>T, XM_011529891.1:c.214G>T, XP_005261286.1:p.Ala72Ser, XP_011528187.1:p.Ala110Ser, XP_011528188.1:p.Ala110Ser, XP_011528189.1:p.Ala72Ser, XP_011528190.1:p.Ala72Ser, XP_011528191.1:p.Ala72Ser, XP_011528192.1:p.Ala72Ser, XP_011528193.1:p.Ala72Ser, rs17817484, rs60776956
G > T
SNP
A72S
No VIP available No Clinical Annotations available VA
rs6822844 NC_000004.11:g.123509421G>T, NC_000004.12:g.122588266G>T, rs61272394
G > T
SNP
No VIP available No Clinical Annotations available VA
rs6956344 NC_000007.13:g.99359151C>T, NC_000007.14:g.99761528C>T, NG_008421.1:g.27658G>A, NM_001202855.2:c.1250+513G>A, NM_017460.5:c.1253+513G>A, XM_011515841.1:c.1346+248G>A, XM_011515842.1:c.1343+248G>A
C > T
SNP
No VIP available No Clinical Annotations available VA
rs737865 NC_000022.10:g.19930121A>G, NC_000022.11:g.19942598A>G, NG_011526.1:g.5859A>G, NG_011835.1:g.4239T>C, NM_000754.3:c.-92+701A>G, NM_001282512.1:c.-795T>C, NM_006440.4:c.-795T>C, XM_005261214.1:c.-795T>C, XM_005261216.1:c.-795T>C, XM_005261217.1:c.-795T>C, XM_005261229.1:c.-386+701A>G, XM_011529887.1:c.-92+701A>G, XM_011529890.1:c.-386+701A>G, XM_011529891.1:c.-386+423A>G, rs386609682, rs59045144
A > G
SNP
rs776746 NC_000007.13:g.99270539C>T, NC_000007.14:g.99672916T>C, NG_007938.1:g.12083G=, NG_007938.1:g.12083G>A, NM_000777.4:c.219-237A>G, NM_000777.4:c.219-237G>A, NM_001190484.2:c.219-237A>G, NM_001190484.2:c.219-237G>A, NM_001291829.1:c.-253-1A>G, NM_001291829.1:c.-253-1G>A, NM_001291830.1:c.189-237A>G, NM_001291830.1:c.189-237G>A, NR_033807.2:n.717-1A>G, NR_033807.2:n.717-1G>A, NR_033808.1:n.689-1G>A, NR_033809.1:n.581-237G>A, NR_033810.1:n.689-1G>A, NR_033811.1:n.321-1G>A, NR_033812.1:n.321-1G>A, XM_005250169.1:c.189-237G>A, XM_005250170.1:c.-357-1G>A, XM_005250171.1:c.-253-1G>A, XM_005250172.1:c.-254G>A, XM_005250173.1:c.-331-237G>A, XM_005250198.1:c.806-4288C>T, XM_006715859.2:c.219-237A>G, XM_011515843.1:c.-254A>G, XM_011515844.1:c.-229-237A>G, XM_011515845.1:c.-463-1A>G, XM_011515846.1:c.-331-237A>G, XM_011515847.1:c.-571-1A>G, XR_927383.1:n.344-237A>G, XR_927402.1:n.1466+48736T>C, rs10361242, rs11266830, rs386613022, rs58244770
C > T
SNP
No VIP available CA VA
rs7903146 NC_000010.10:g.114758349C>T, NC_000010.11:g.112998590C>T, NG_012631.1:g.53341C>T, NM_001146274.1:c.450+33966C>T, NM_001146283.1:c.382-41435C>T, NM_001146284.1:c.382-41435C>T, NM_001146285.1:c.382-41435C>T, NM_001146286.1:c.382-41435C>T, NM_001198525.1:c.382-41435C>T, NM_001198526.1:c.382-41435C>T, NM_001198527.1:c.382-41435C>T, NM_001198528.1:c.382-41435C>T, NM_001198529.1:c.382-41435C>T, NM_001198530.1:c.381+46983C>T, NM_001198531.1:c.450+33966C>T, NM_030756.4:c.382-41435C>T, XM_005270071.1:c.450+33966C>T, XM_005270072.1:c.450+33966C>T, XM_005270073.1:c.450+33966C>T, XM_005270074.1:c.450+33966C>T, XM_005270075.1:c.450+33966C>T, XM_005270076.1:c.450+33966C>T, XM_005270077.1:c.450+33966C>T, XM_005270078.1:c.450+33966C>T, XM_005270079.1:c.450+33966C>T, XM_005270080.1:c.382-41435C>T, XM_005270081.1:c.382-41435C>T, XM_005270082.1:c.450+33966C>T, XM_005270083.1:c.450+33966C>T, XM_005270084.1:c.450+33966C>T, XM_005270085.1:c.450+33966C>T, XM_005270086.1:c.382-41435C>T, XM_005270087.1:c.382-41435C>T, XM_005270088.1:c.382-41435C>T, XM_005270089.1:c.382-41435C>T, XM_005270090.1:c.381+46983C>T, XM_005270091.1:c.450+33966C>T, XM_005270091.2:c.450+33966C>T, XM_005270092.1:c.450+33966C>T, XM_005270093.1:c.450+33966C>T, XM_005270094.1:c.450+33966C>T, XM_005270095.1:c.450+33966C>T, XM_005270096.1:c.450+33966C>T, XM_005270100.1:c.450+33966C>T, XM_005270101.1:c.382-41435C>T, XM_005270102.1:c.450+33966C>T, XM_005270103.1:c.382-41435C>T, XM_005270104.1:c.382-41435C>T, XM_006717956.2:c.-10+33966C>T, XM_011540109.1:c.450+33966C>T, XM_011540110.1:c.382-41435C>T, XM_011540111.1:c.382-41435C>T, XM_011540112.1:c.450+33966C>T, XM_011540113.1:c.450+33966C>T, XM_011540114.1:c.450+33966C>T, XM_011540115.1:c.450+33966C>T, XM_011540116.1:c.450+33966C>T, XM_011540117.1:c.450+33966C>T, XM_011540118.1:c.450+33966C>T, XM_011540119.1:c.450+33966C>T, rs60693287
C > T
SNP
No VIP available CA VA
rs846908 NC_000001.10:g.209858453A>G, NC_000001.11:g.209685108A>G, NG_012081.1:g.3904A>G, NM_001206741.1:c.-1226A>G, NM_181755.2:c.-1204A>G, NR_134509.1:n.97-22047T>C, NR_134510.1:n.67-22047T>C, XR_922539.1:n.2793T>C, XR_922542.1:n.3235-8575T>C, XR_922543.1:n.3226-22047T>C, XR_922547.1:n.3091-22047T>C, XR_922549.1:n.125-22047T>C, rs58160156
A > G
SNP
No VIP available CA VA
rs846910 NC_000001.10:g.209875254A>G, NC_000001.11:g.209701909A>G, NG_012081.1:g.20705A>G, NM_001206741.1:c.-48-2986A>G, NM_181755.2:c.-26-3008A>G, NR_134509.1:n.96+22121T>C, NR_134510.1:n.67-38848T>C, XR_922542.1:n.3234+22121T>C, XR_922543.1:n.3225+22121T>C, XR_922547.1:n.3091-38848T>C, XR_922549.1:n.125-38848T>C, rs3753520, rs57254759
A > G
SNP
No VIP available CA VA
rs9282564 NC_000007.13:g.87229440T>C, NC_000007.14:g.87600124T>C, NG_011513.1:g.118125A>G, NM_000927.4:c.61A>G, NP_000918.2:p.Asn21Asp, rs13234342, rs202032114, rs61615398
T > C
SNP
N21D
Alleles, Functions, and Amino Acid Translations are all sourced from dbSNP 147

Overview

Generic Names
  • FK-506
  • FK5
  • FK506
  • K506
  • Tacarolimus
  • tacrolimus
  • tacrolimus hydrate
Trade Names
  • Fujimycin
  • LCP-Tacro
  • Prograf
  • Protopic
Brand Mixture Names

PharmGKB Accession Id

PA451578

Type(s):

Drug

Description

Tacrolimus (also FK-506 or Fujimycin) is an immunosuppressive drug whose main use is after organ transplant to reduce the activity of the patient's immune system and so the risk of organ rejection. It is also used in a topical preparation in the treatment of severe atopic dermatitis, severe refractory uveitis after bone marrow transplants, and the skin condition vitiligo. It was discovered in 1984 from the fermentation broth of a Japanese soil sample that contained the bacteria Streptomyces tsukubaensis. Tacrolimus is chemically known as a macrolide. It reduces peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This FKBP12-FK506 complex interacts with and inhibits calcineurin thus inhibiting both T-lymphocyte signal transduction and IL-2 transcription.

Source: Drug Bank

Indication

For use after allogenic organ transplant to reduce the activity of the patient's immune system and so the risk of organ rejection. It was first approved by the FDA in 1994 for use in liver transplantation, this has been extended to include kidney, heart, small bowel, pancreas, lung, trachea, skin, cornea, and limb transplants. It has also been used in a topical preparation in the treatment of severe atopic dermatitis.

Source: Drug Bank

Other Vocabularies

Information pulled from DrugBank has not been reviewed by PharmGKB.

Pharmacology, Interactions, and Contraindications

Mechanism of Action

The mechanism of action of tacrolimus in atopic dermatitis is not known. While the following have been observed, the clinical significance of these observations in atopic dermatitis is not known. It has been demonstrated that tacrolimus inhibits T-lymphocyte activation by first binding to an intracellular protein, FKBP-12. A complex of tacrolimus-FKBP-12, calcium, calmodulin, and calcineurin is then formed and the phosphatase activity of calcineurin is inhibited. This prevents the dephosphorylation and translocation of nuclear factor of activated T-cells (NF-AT), a nuclear component thought to initiate gene transcription for the formation of lymphokines. Tacrolimus also inhibits the transcription for genes which encode IL-3, IL-4, IL-5, GM-CSF, and TNF-, all of which are involved in the early stages of T-cell activation. Additionally, tacrolimus has been shown to inhibit the release of pre-formed mediators from skin mast cells and basophils, and to downregulate the expression of FceRI on Langerhans cells.

Source: Drug Bank

Pharmacology

Tacrolimus is a macrolide antibiotic. It acts by reducing peptidyl-prolyl isomerase activity by binding to the immunophilin FKBP-12 (FK506 binding protein) creating a new complex. This inhibits both T-lymphocyte signal transduction and IL-2 transcription. Although this activity is similar to cyclosporine studies have shown that the incidence of acute rejection is reduced by tacrolimus use over cyclosporine. Tacrolimus has also been shown to be effective in the topical treatment of eczema, particularly atopic eczema. It suppresses inflammation in a similar way to steroids, but is not as powerful. An important dermatological advantage of tacrolimus is that it can be used directly on the face; topical steroids cannot be used on the face, as they thin the skin dramatically there. On other parts of the body, topical steroid are generally a better treatment.

Source: Drug Bank

Absorption, Distribution, Metabolism, Elimination & Toxicity

Biotransformation

Hepatic, extensive, primarily by CYP3A4. The major metabolite identified in incubations with human liver microsomes is 13-demethyl tacrolimus. In in vitro studies, a 31-demethyl metabolite has been reported to have the same activity as tacrolimus.

Source: Drug Bank

Protein Binding

75-99%

Source: Drug Bank

Absorption

20% bioavailability; less after eating food rich in fat

Source: Drug Bank

Half-Life

11.3 hours (range from 3.5 to 40.6 hours)

Source: Drug Bank

Toxicity

Side effects can be severe and include blurred vision, liver and kidney problems (it is nephrotoxic), seizures, tremors, hypertension, hypomagnesemia, diabetes mellitus, hyperkalemia, itching, insomnia, confusion. LD 50=134-194 mg/kg (rat).

Source: Drug Bank

Clearance

Source: Drug Bank

Route of Elimination

In man, less than 1% of the dose administered is excreted unchanged in urine. Fecal elimination accounted for 92.6±30.7%, urinary elimination accounted for 2.3±1.1%.

Source: Drug Bank

Volume of Distribution

Source: Drug Bank

Chemical Properties

Chemical Formula

C44H69NO12

Source: Drug Bank

Canonical SMILES

CO[C@@H]1C[C@@H]

Source: Drug Bank

Average Molecular Weight

804.0182

Source: Drug Bank

Monoisotopic Molecular Weight

803.481976677

Source: Drug Bank

SMILES

CO[C@@H]1C[C@@H](CC[C@H]1O)\C=C(/C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@]2(O)O[C@@H]([C@H](C[C@H]2C)OC)[C@H](C[C@@H](C)C\C(C)=C\[C@@H](CC=C)C(=O)C[C@H](O)[C@H]1C)OC

Source: Drug Bank

InChI String

InChI=1S/C44H69NO12/c1-10-13-31-19-25(2)18-26(3)20-37(54-8)40-38(55-9)22-28(5)44(52,57-40)41(49)42(50)45-17-12-11-14-32(45)43(51)56-39(29(6)34(47)24-35(31)48)27(4)21-30-15-16-33(46)36(23-30)53-7/h10,19,21,26,28-34,36-40,46-47,52H,1,11-18,20,22-24H2,2-9H3/b25-19+,27-21+/t26-,28+,29+,30-,31+,32-,33+,34-,36+,37-,38-,39+,40+,44+/m0/s1

Source: Drug Bank

Genes that are associated with this drug in PharmGKB's database based on (1) variant annotations, (2) literature review, (3) pathways or (4) information automatically retrieved from DrugBank, depending on the "evidence" and "source" listed below.

Curated Information ?

Drug Targets

Gene Description
FKBP1A (source: Drug Bank)

Drug Interactions

Interaction Description
amprenavir - tacrolimus The protease inhibitor increase the effect and toxicity of tacrolimus (source: Drug Bank)
amprenavir - tacrolimus The protease inhibitor, amprenavir, increase the effect and toxicity of tacrolimus. (source: Drug Bank)
atazanavir - tacrolimus Increases the effect and toxicity of immunosuppressant (source: Drug Bank)
atazanavir - tacrolimus Increases the effect and toxicity of immunosuppressant (source: Drug Bank)
atorvastatin - tacrolimus Tacrolimus increases the effect and toxicity of the statin (source: Drug Bank)
chloramphenicol - tacrolimus Increases tacrolimus levels (source: Drug Bank)
chloramphenicol - tacrolimus Increases tacrolimus levels (source: Drug Bank)
clarithromycin - tacrolimus This antibiotic increases the effect and toxicity of tacrolimus (source: Drug Bank)
clarithromycin - tacrolimus This antibiotic increases the effect and toxicity of tacrolimus (source: Drug Bank)
cyclosporine - tacrolimus Additive toxicities for these agents (source: Drug Bank)
cyclosporine - tacrolimus Additive toxicities for these agents (source: Drug Bank)
danazol - tacrolimus Increases the effect and toxicity of tacrolimus (source: Drug Bank)
diltiazem - tacrolimus Increases levels of tacrolimus (source: Drug Bank)
diltiazem - tacrolimus Increases levels of tacrolimus (source: Drug Bank)
erythromycin - tacrolimus Erythromycin increases the effect and toxicity of tacrolimus (source: Drug Bank)
erythromycin - tacrolimus Erythromycin increases the effect and toxicity of tacrolimus (source: Drug Bank)
felodipine - tacrolimus Felodipine increases tacrolimus levels (source: Drug Bank)
felodipine - tacrolimus Felodipine increases tacrolimus levels (source: Drug Bank)
fluconazole - tacrolimus Increases the effect of the immunosuppressant (source: Drug Bank)
fluconazole - tacrolimus Increases the effect of the immunosuppressant (source: Drug Bank)
fosamprenavir - tacrolimus The protease inhibitor increases the effect and toxicity of tacrolimus (source: Drug Bank)
fosamprenavir - tacrolimus The protease inhibitor, fosamprenavir, may increase the effect and toxicity of tacrolimus. (source: Drug Bank)
fosphenytoin - tacrolimus The hydantoin decreases the effect of tacrolimus (source: Drug Bank)
indinavir - tacrolimus Increases the effect and toxicity of tacrolimus (source: Drug Bank)
indinavir - tacrolimus Increases the effect and toxicity of tacrolimus (source: Drug Bank)
itraconazole - tacrolimus The imidazole increases the effect of immunosuppressant (source: Drug Bank)
itraconazole - tacrolimus The imidazole increases the effect of immunosuppressant (source: Drug Bank)
ketoconazole - tacrolimus The imidazole increases the effect of immunosuppressant (source: Drug Bank)
ketoconazole - tacrolimus The imidazole increases the effect of immunosuppressant (source: Drug Bank)
lovastatin - tacrolimus Tacrolimus increases the effect and toxicity of the statin (source: Drug Bank)
metronidazole - tacrolimus Metronidazole increases the levels/toxicity of tacrolimus (source: Drug Bank)
metronidazole - tacrolimus Metronidazole increases the levels/toxicity of tacrolimus (source: Drug Bank)
mycophenolate mofetil - tacrolimus Increased mycophenolic acid levels (source: Drug Bank)
mycophenolate mofetil - tacrolimus Increased mycophenolic acid levels (source: Drug Bank)
nefazodone - tacrolimus Nefazodone increases the effect and toxicity of tacrolimus (source: Drug Bank)
nefazodone - tacrolimus Nefazodone increases the effect and toxicity of tacrolimus (source: Drug Bank)
nelfinavir - tacrolimus The protease inhibitor increases the effect and toxicity of tacrolimus (source: Drug Bank)
nelfinavir - tacrolimus The protease inhibitor, nelfinavir, may increase the effect and toxicity of tacrolimus. (source: Drug Bank)
nifedipine - tacrolimus Nifedipine increases serum levels of tacrolimus (source: Drug Bank)
nifedipine - tacrolimus Nifedipine increases serum levels of tacrolimus (source: Drug Bank)
phenytoin - tacrolimus The hydantoin decreases the effect of tacrolimus (source: Drug Bank)
phenytoin - tacrolimus The hydantoin decreases the effect of tacrolimus (source: Drug Bank)
quinupristin - tacrolimus This combination presents an increased risk of toxicity (source: Drug Bank)
rifabutin - tacrolimus The rifamycin decreases the effect of tacrolimus (source: Drug Bank)
rifabutin - tacrolimus The rifamycin decreases the effect of tacrolimus (source: Drug Bank)
rifampin - tacrolimus The rifamycin decreases the effect of tacrolimus (source: Drug Bank)
rifampin - tacrolimus The rifamycin decreases the effect of tacrolimus (source: Drug Bank)
telithromycin - tacrolimus This antibiotic increases the effect and toxicity of tacrolimus (source: Drug Bank)
telithromycin - tacrolimus Telithromycin may reduce clearance of Tacrolimus. Consider alternate therapy or monitor for changes in the therapeutic/adverse effects of Tacrolimus if Telithromycin is initiated, discontinued or dose changed. (source: Drug Bank)
thiothixene - tacrolimus May cause additive QTc-prolonging effects. Increased risk of ventricular arrhythmias. Consider alternate therapy. Thorough risk:benefit assessment is required prior to co-administration. (source: Drug Bank)
thiothixene - tacrolimus May cause additive QTc-prolonging effects. Increased risk of ventricular arrhythmias. Consider alternate therapy. Thorough risk:benefit assessment is required prior to co-administration. (source: Drug Bank)
tipranavir - tacrolimus Tipranavir may decrease the metabolism and clearance of Tacrolimus. Dose adjustments may be required. Monitor for Tacrolimus efficacy and toxicity during concomitant therapy. (source: Drug Bank)
topotecan - tacrolimus The p-glycoprotein inhibitor, Tacrolimus, may increase the bioavailability of oral Topotecan. A clinically significant effect is also expected with IV Topotecan. Concomitant therapy should be avoided. (source: Drug Bank)
toremifene - tacrolimus Additive QTc-prolongation may occur, increasing the risk of serious ventricular arrhythmias. Consider alternate therapy. A thorough risk:benefit assessment is required prior to co-administration. (source: Drug Bank)
trastuzumab - tacrolimus Trastuzumab may increase the risk of neutropenia and anemia. Monitor closely for signs and symptoms of adverse events. (source: Drug Bank)
voriconazole - tacrolimus Voriconazole, a strong CYP3A4 inhibitor, may increase the serum concentration of tacrolimus by decreasing its metabolism. Additive QTc prolongation may also occur. Consider alternate therapy or monitor for changes in the therapeutic and adverse effects of tacrolimus if voriconazole is initiated, discontinued or dose changed. (source: Drug Bank)
vorinostat - tacrolimus Additive QTc prolongation may occur. Consider alternate therapy or monitor for QTc prolongation as this can lead to Torsade de Pointes (TdP). (source: Drug Bank)
ziprasidone - tacrolimus Additive QTc-prolonging effects may increase the risk of severe arrhythmias. Concomitant therapy is contraindicated. (source: Drug Bank)
zuclopenthixol - tacrolimus Additive QTc prolongation may occur. Consider alternate therapy or use caution and monitor for QTc prolongation as this can lead to Torsade de Pointes (TdP). (source: Drug Bank)

Curated Information ?

EvidenceDisease
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Acquired Immunodeficiency Syndrome
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
acute cellular rejection
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Alcoholism
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Arthritis, Rheumatoid
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
bioavailability
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Breast Neoplasms
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Carcinoma, Non-Small-Cell Lung
No Dosing Guideline available DL CA VA No VIP available No VIP available
Colitis, Ulcerative
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Colonic Neoplasms
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Colorectal Neoplasms
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Connective Tissue Diseases
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
creatinine clearance
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Crohn Disease
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Cystic Fibrosis
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
delayed graft function
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Depression
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Dermatitis, Atopic
No Dosing Guideline available DL No Clinical Annotation available VA No VIP available No VIP available
Diabetes Mellitus
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Drug Hypersensitivity
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Drug interaction with drug
No Dosing Guideline available DL No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Drug Toxicity
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Gastroesophageal Reflux
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Gastrointestinal Stromal Tumors
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Gilbert's syndrome
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
glomerular filtration rate
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Graft vs Host Disease
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Heart Defects, Congenital
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Heart Failure
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
heart transplantation
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
hematopoietic stem cell transplantation
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
hemopoietic stem cell transplant
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Hemorrhage
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
HIV
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Hyperbilirubinemia
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Hyperlipidemias
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Hypertension
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Hypokalemia
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Infection
No Dosing Guideline available DL No Clinical Annotation available VA No VIP available No VIP available
Kidney Diseases
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Kidney Failure
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Kidney Failure, Chronic
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Kidney Neoplasms
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Kidney Transplantation
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Leukemia, Myelogenous, Chronic, BCR-ABL Positive
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Leukemia, Promyelocytic, Acute
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
liver transplantation
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
lung transplantation
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Lupus Nephritis
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
metabolic syndrome
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Muscular Diseases
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Myalgia unspecified
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Myocardial Infarction
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Neoplasms
No Dosing Guideline available DL No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Nephritis, Interstitial
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
nephrotoxicity
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Neurotoxicity Syndromes
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Organ Transplantation
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pain
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Peripheral Vascular Diseases
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Precursor Cell Lymphoblastic Leukemia-Lymphoma
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Stroke
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Thrombosis
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Toxic liver disease
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
transplant rejection
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Transplantation
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
transplanted organ rejection
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Virus Diseases

Relationships from National Drug File - Reference Terminology (NDF-RT)

May Treat
May Prevent
Contraindicated With

Publications related to tacrolimus: 298

No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients. Clinical transplantation. 2016. Deininger Kimberly M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Long-term clinical impact of adaptation of initial tacrolimus dosing to CYP3A5 genotype. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2016. Pallet Nicolas, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP3A5 and MDR-1 gene polymorphisms on the dose and level of tacrolimus among living-donor liver transplanted patients: single center experience. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals. 2016. Fathy Mona, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
A candidate gene approach of the calcineurin pathway to identify variants associated with clinical outcomes in renal transplantation. Pharmacogenomics. 2016. Pouché Lucie, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Donor ABCB1 3435 C>T genetic polymorphisms influence early renal function in kidney transplant recipients treated with tacrolimus. Pharmacogenomics. 2016. Yan Lin, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
New challenges and promises in solid organ transplantation pharmacogenetics: the genetic variability of proteins involved in the pharmacodynamics of immunosuppressive drugs. Pharmacogenomics. 2016. Pouché Lucie, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A pharmacogenomic study on the pharmacokinetics of tacrolimus in healthy subjects using the DMET(TM) Plus platform. The pharmacogenomics journal. 2016. Choi Y, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
A Randomized controlled trial comparing the efficacy of CYP3A5 genotype-based with bodyweight-based tacrolimus dosing after living donor kidney transplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2015. Shuker Nauras, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP3A5 polymorphism on trough concentrations and outcomes of tacrolimus minimization during the early period after kidney transplantation. European journal of clinical pharmacology. 2015. Yaowakulpatana Khemjira, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The importance of MDR1 gene polymorphisms for tacrolimus dosage. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences. 2015. Kravljaca Milica, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. The pharmacogenomics journal. 2015. Sanghavi K, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effects of CYP3A5 Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Renal Transplant Recipients. Transplantation proceedings. 2016. Mac Guad R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The role of CYP3A5 polymorphism and dose adjustments following conversion of twice-daily to once-daily tacrolimus in renal transplant recipients. Transplantation research. 2016. Zaltzman Alina S R, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics. 2015. Aouam Karim, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Population pharmacokinetics and pharmacogenetics of once daily tacrolimus formulation in stable liver transplant recipients. European journal of clinical pharmacology. 2015. Moes D J A R, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Liver Transplant Patient Carriers of Polymorphism Cyp3a5*1 Donors May Need More Doses of Tacrolimus From the First Month After Transplantation. Transplantation proceedings. 2015. Argudo A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Development of Human Membrane Transporters: Drug Disposition and Pharmacogenetics. Clinical pharmacokinetics. 2015. Mooij Miriam G, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Investigation of CYP 3A5 and ABCB1 gene polymorphisms in the long-term following renal transplantation: Effects on tacrolimus exposure and kidney function. Experimental and therapeutic medicine. 2015. Stefanović Nikola Z, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of ADME genomic variants on tacrolimus/sirolimus blood levels and GVHD after allogeneic hematopoietic cell transplantation. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2015. Khaled Samer K, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Personalizing initial calcineurin inhibitor dosing by adjusting to donor CYP3A-status in liver transplant patients. British journal of clinical pharmacology. 2015. Monostory Katalin, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Tacrolimus pharmacokinetics after kidney transplantation - Influence of changes in haematocrit and steroid dose. British journal of clinical pharmacology. 2015. Staatz Christine E, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A5 and ABCB1 polymorphisms on the interaction between tacrolimus and itraconazole in patients with connective tissue disease. European journal of clinical pharmacology. 2015. Togashi Masaru, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. International journal of clinical pharmacology and therapeutics. 2015. Zhang Jing-Jing, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Interactive effects of CYP3A4, CYP3A5, MDR1 and NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics. 2015. Li Jia-Li, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effects of CYP3A5 polymorphism and the tacrolimus 12 h concentration on tacrolimus-induced acute renal dysfunction in patients with lupus nephritis. Xenobiotica; the fate of foreign compounds in biological systems. 2015. Niioka Takenori, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing hematocrit. British journal of clinical pharmacology. 2015. de Jonge Hylke, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Association of SNPs with the efficacy and safety of immunosuppressant therapy after heart transplantation. Pharmacogenomics. 2015. Sánchez-Lázaro Ignacio, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics. 2015. Pulk Rebecca A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A5 polymorphism on the pharmacokinetics of tacrolimus and acute rejection in renal transplant recipients: experience at a single centre. International journal of clinical practice. 2015. Cheng Y, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 genotypes on tacrolimus dose requirement: age and its pharmacological interaction with ABCB1 genetics in the Chinese paediatric liver transplantation. International journal of clinical practice. 2015. Yang T-H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population pharmacokinetic analysis of tacrolimus in mexican paediatric renal transplant patients: role of CYP3A5 genotype and formulation. British journal of clinical pharmacology. 2015. Jacobo-Cabral Carlos Orlando, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Polymorphism of the CYP3A5 Gene and Its Effect on Tacrolimus Blood Level. Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation. 2015. Nair Sreeja S, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of Tacrolimus in Chinese adult liver transplant patients. Xenobiotica; the fate of foreign compounds in biological systems. 2015. Zhu LiQin, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
ABCB1 genetic variant and its associated tacrolimus pharmacokinetics affect renal function in patients with rheumatoid arthritis. Clinica chimica acta; international journal of clinical chemistry. 2015. Naito Takafumi, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. Clinical pharmacology and therapeutics. 2015. Birdwell Kelly A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Donor IL-18 rs5744247 polymorphism as a new biomarker of tacrolimus elimination in Chinese liver transplant patients during the early post-transplantation period: results from two cohort studies. Pharmacogenomics. 2015. Fan Junwei, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Association between interleukin-18 promoter variants and tacrolimus pharmacokinetics in Chinese renal transplant patients. European journal of clinical pharmacology. 2015. Xing Jiazhen, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The donor ABCB1 (MDR-1) C3435T polymorphism is a determinant of the graft glomerular filtration rate among tacrolimus treated kidney transplanted patients. Journal of human genetics. 2015. Tavira Beatriz, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Kidney Transplant Recipients Carrying the CYP3A4*22 Allelic Variant Have Reduced Tacrolimus Clearance and Often Reach Supratherapeutic Tacrolimus Concentrations. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2015. Pallet N, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Associations of HSD11B1 Polymorphisms with Tacrolimus Concentrations in Chinese Renal Transplant Recipients with Prednisone Combined Therapy. Drug metabolism and disposition: the biological fate of chemicals. 2015. Liu Xiaoman, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of genetic polymorphism of CYP3A5 and CYP2C19, and concomitant use of voriconazole on blood tacrolimus concentration in patients receiving hematopoietic stem cell transplantation. Therapeutic drug monitoring. 2015. Iwamoto Takuya, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Benefits of minimizing immunosuppressive dosage according to cytochrome P450 3A5 genotype in liver transplant patients: findings from a single-center study. Genetics and molecular research : GMR. 2015. Wang L, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A5 gene polymorphisms on tacrolimus concentration/dosage ratio in adult liver transplant patients. Genetics and molecular research : GMR. 2015. Wang L, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Relationships of related genetic polymorphisms and individualized medication of tacrolimus in patients with renal transplantation. International journal of clinical and experimental medicine. 2015. Zhu Lin, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation. International journal of molecular sciences. 2015. Ruiz Jesus, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Adiponectin and leptin gene polymorphisms in patients with post-transplant diabetes mellitus. Pharmacogenomics. 2015. Romanowski Maciej, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Relationship between mRNA expression levels of CYP3A4, CYP3A5 and SXR in peripheral mononuclear blood cells and aging in young kidney transplant recipients under tacrolimus treatment. Pharmacogenomics. 2015. Ferraresso Mariano, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effects of the CYP3A4*1B Genetic Polymorphism on the Pharmacokinetics of Tacrolimus in Adult Renal Transplant Recipients: A Meta-Analysis. PloS one. 2015. Shi Wei-Long, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 and ABCB1 genotype influence tacrolimus and sirolimus pharmacokinetics in renal transplant recipients. SpringerPlus. 2015. Li Yi, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5*3 and POR*28 genetic variants influence the required dose of tacrolimus in heart transplant recipients. Therapeutic drug monitoring. 2014. Lesche Dorothea, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Combined effects of CYP3A5*1, POR*28, and CYP3A4*22 single nucleotide polymorphisms on early concentration-controlled tacrolimus exposure in de-novo renal recipients. Pharmacogenetics and genomics. 2014. Kuypers Dirk R J, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. The pharmacogenomics journal. 2014. de Jonge H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Improved prediction of tacrolimus concentrations early after kidney transplantation using theory-based pharmacokinetic modelling. British journal of clinical pharmacology. 2014. Størset Elisabet, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. The pharmacogenomics journal. 2014. Rojas L, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Which genetic determinants should be considered for tacrolimus dose optimization in kidney transplantation? A combined analysis of genes affecting the CYP3A locus. Therapeutic drug monitoring. 2014. Bruckmueller Henrike, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of TLR4 rs1927907 locus polymorphisms on tacrolimus pharmacokinetics in the early stage after liver transplantation. European journal of clinical pharmacology. 2014. Wang Zhaowen, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Pharmacokinetic and CYP3A5 pharmacogenetic differences between once- and twice-daily tacrolimus from the first dosing day to 1 year after renal transplantation. Pharmacogenomics. 2014. Satoh Shigeru, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Genetic variance in ABCB1 and CYP3A5 does not contribute toward the development of chronic kidney disease after liver transplantation. Pharmacogenetics and genomics. 2014. Tapirdamaz Ozlem, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of cytochrome P450 3A5 polymorphism in graft livers on the frequency of acute cellular rejection in living-donor liver transplantation. Pharmacogenetics and genomics. 2014. Uesugi Miwa, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Conversion from twice- to once-daily tacrolimus in pediatric kidney recipients: a pharmacokinetic and bioequivalence study. Pediatric nephrology (Berlin, Germany). 2014. Lapeyraque Anne-Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of PPARA and POR polymorphisms on tacrolimus pharmacokinetics and new-onset diabetes in kidney transplant recipients. Pharmacogenetics and genomics. 2014. Kurzawski Mateusz, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Calcineurin inhibitors and hypertension: a role for pharmacogenetics?. Pharmacogenomics. 2014. Moes Arthur D, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of donor-recipient CYP3A4/5 genotypes, age and fluconazole on tacrolimus pharmacokinetics in pediatric liver transplantation: a population approach. Pharmacogenomics. 2014. Guy-Viterbo Vanessa, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of CYP3A5 genotype, steroids, and azoles on tacrolimus in a pediatric renal transplant population. Pediatric nephrology (Berlin, Germany). 2014. Lalan Shwetal, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Determination of the most influential sources of variability in tacrolimus trough blood concentrations in adult liver transplant recipients: a bottom-up approach. The AAPS journal. 2014. Gérard Cécile, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. British journal of clinical pharmacology. 2014. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. European journal of clinical pharmacology. 2014. Lunde Ingrid, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications in Chinese pediatric liver transplant patients. Pediatric transplantation. 2014. Xue Feng, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The impact of genetic polymorphisms on time required to attain the target tacrolimus levels and subsequent pharmacodynamic outcomes in pediatric kidney transplant patients. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia. 2014. Shilbayeh Sireen. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of cytochrome P450 3A5 polymorphisms on viral infection incidence in kidney transplant patients treated with tacrolimus. Transplantation proceedings. 2014. Hattori Y, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Reduced variability of tacrolimus trough level in once-daily tacrolimus-based Taiwanese kidney transplant recipients with high-expressive genotype of cytochrome P450 3A5. Transplantation proceedings. 2014. Wu M-J, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Relationship of Cyp3a5 Genotype and Abcb1 Diplotype to Tacrolimus Disposition in Brazilian Kidney Transplant Patients. British journal of clinical pharmacology. 2014. Cusinato D A C, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Significant association between CYP3A5 polymorphism and blood concentration of tacrolimus in patients with connective tissue diseases. Journal of human genetics. 2014. Tanaka Kosuke, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 and CYP3A4, but not ABCB1 polymorphisms affect tacrolimus dose-adjusted trough concentrations in kidney transplant recipients. Pharmacogenomics. 2014. Kurzawski Mateusz, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Personalizing the management of heart failure in congenital heart disease: challenges and opportunities. Pharmacogenomics. 2014. de Denus Simon, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenotyping of CYP3A5 in predicting dose-adjusted trough levels of tacrolimus among Malaysian kidney-transplant patients. Canadian journal of physiology and pharmacology. 2014. Hamzah Sharina, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A4*22, CYP3A5*3, and CYP3A Combined Genotypes on Cyclosporine, Everolimus, and Tacrolimus Pharmacokinetics in Renal Transplantation. CPT: pharmacometrics & systems pharmacology. 2014. Moes D J A R, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Association of hemoglobin levels, CYP3A5, and NR1I3 gene polymorphisms with tacrolimus pharmacokinetics in liver transplant patients. Drug metabolism and pharmacokinetics. 2013. Chen Dawei, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Capability of Utilizing CYP3A5 Polymorphisms to Predict Therapeutic Dosage of Tacrolimus at Early Stage Post-Renal Transplantation. International journal of molecular sciences. 2014. Niioka Takenori, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Utilization of an emr-biorepository to identify the genetic predictors of calcineurin-inhibitor toxicity in heart transplant recipients. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 2014. Oetjens Matthew, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PloS one. 2014. Li Chuan-Jiang, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Personalized Tacrolimus Dose Requirement by CYP3A5 but Not ABCB1 or ACE Genotyping in Both Recipient and Donor after Pediatric Liver Transplantation. PloS one. 2014. Chen Yi-Kuan, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effects of Combinational CYP3A5 6986A>G Polymorphism in Graft Liver and Native Intestine on the Pharmacokinetics of Tacrolimus in Liver Transplant Patients: A Meta-Analysis. Therapeutic drug monitoring. 2013. Buendia Jefferson A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population Pharmacokinetic-Pharmacogenetic Model of Tacrolimus in the Early Period after Kidney Transplantation. Basic & clinical pharmacology & toxicology. 2013. Han Nayoung, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clinical pharmacology and therapeutics. 2013. Van Driest Sara L, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation. Transplant international : official journal of the European Society for Organ Transplantation. 2013. Asberg Anders, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Identification and characterization of a defect CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clinical pharmacology and therapeutics. 2013. Werk Anneke Nina, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Personalized Tacrolimus Doses Determined by CYP3A5 Genotype for Induction and Maintenance Phases of Kidney Transplantation. Clinical therapeutics. 2013. Vannaprasaht Suda, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of CYP3A5*3 Polymorphism on Pharmacokinetic Drug Interaction between Tacrolimus and Amlodipine. Drug metabolism and pharmacokinetics. 2013. Zuo Xiao-Cong, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Single-nucleotide polymorphisms in P450 oxidoreductase and peroxisome proliferator-activated receptor-alpha are associated with the development of new-onset diabetes after transplantation in kidney transplant recipients treated with tacrolimus. Pharmacogenetics and genomics. 2013. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
A Markov chain model to evaluate the effect of CYP3A5 and ABCB1 polymorphisms on adverse events associated with tacrolimus in pediatric renal transplantation. The AAPS journal. 2013. Sy Sherwin K B, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP3A4*22 Allele on Tacrolimus Pharmacokinetics in Early Period After Renal Transplantation: Toward Updated Genotype-Based Dosage Guidelines. Therapeutic drug monitoring. 2013. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population Pharmacokinetics of Tacrolimus in Adult Kidney Transplant Patients: Impact of CYP3A5 Genotype on Starting Dose. Therapeutic drug monitoring. 2013. Bergmann Troels K, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. British journal of clinical pharmacology. 2013. Boughton Oliver, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clinical pharmacokinetics. 2013. Ogasawara Ken, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmaceutical and genetic determinants for interindividual differences of tacrolimus bioavailability in renal transplant recipients. European journal of clinical pharmacology. 2013. Niioka Takenori, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism. Pharmacogenomics. 2013. de Jonge Hylke, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of POR*28 on the Pharmacokinetics of Tacrolimus and Cyclosporine a in Renal Transplant Patients. Therapeutic drug monitoring. 2013. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 Genotype, but Not CYP3A4*1b, CYP3A4*22, or Hematocrit, Predicts Tacrolimus Dose Requirements in Brazilian Renal Transplant Patients. Clinical pharmacology and therapeutics. 2013. Santoro A B, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Severe acute nephrotoxicity in a kidney transplant patient despite low tacrolimus levels: a possible interaction between donor and recipient genetic polymorphisms. Journal of clinical pharmacy and therapeutics. 2013. Quaglia M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 genetic polymorphisms affect the pharmacokinetics and short-term remission in patients with ulcerative colitis treated with tacrolimus. Journal of gastroenterology and hepatology. 2013. Hirai Fumihito, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenetics and genomics. 2013. Barbarino Julia M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of donor and recipient CYP3A5 and ABCB1 genetic polymorphisms on tacrolimus dosage requirements and rejection in Caucasian Spanish liver transplant patients. Journal of clinical pharmacology. 2013. Gómez-Bravo Miguel Angel, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Conversion from prograf to advagraf in adolescents with stable liver transplants: Comparative pharmacokinetics and 1-year follow-up. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2013. Carcas-Sansuán Antonio J, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Meta-analysis and systematic review of the effect of the donor and recipient CYP3A5 6986A>G genotype on tacrolimus dose requirements in liver transplantation. Pharmacogenetics and genomics. 2013. Rojas Luis E, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A4*22 and CYP3A combined genotypes both correlate with tacrolimus disposition in pediatric heart transplant recipients. Pharmacogenomics. 2013. Gijsen Violette Mgj, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Tacrolimus dose requirement in pediatric liver transplantation: influence of CYP3A5 gene polymorphism. Pharmacogenomics. 2013. Durand Philippe, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism. Xenobiotica; the fate of foreign compounds in biological systems. 2013. Chitnis Shripad D, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Population pharmacokinetic and pharmacogenetic analysis of tacrolimus in paediatric liver transplant patients. British journal of clinical pharmacology. 2013. Abdel Jalil Mariam H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
The CYP3A4*22 allele affects the predictive value of a pharmacogenetic algorithm predicting tacrolimus predose concentrations. British journal of clinical pharmacology. 2013. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A4/5 polymorphisms affect the blood level of cyclosporine and tacrolimus in Chinese renal transplant recipients. International journal of clinical pharmacology and therapeutics. 2013. Li Dan-ying, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients. Pharmacogenetics and genomics. 2013. Tavira Beatriz, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 genotype had no impact on intrapatient variability of tacrolimus clearance in renal transplant recipients. Therapeutic drug monitoring. 2013. Spierings N, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Challenges in pharmacogenetics. European journal of clinical pharmacology. 2013. Cascorbi Ingolf, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of the P450 oxidoreductase 28 polymorphism on the pharmacokinetics of tacrolimus in Chinese healthy male volunteers. European journal of clinical pharmacology. 2013. Zhang Jing-Jing, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP2C8*3 polymorphism and donor age are associated with allograft dysfunction in kidney transplant recipients treated with calcineurin inhibitors. Journal of clinical pharmacology. 2013. Gervasini Guillermo, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Tacrolimus Placental Transfer at Delivery and Neonatal Exposure through Breast Milk. British journal of clinical pharmacology. 2013. Zheng Songmao, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenetics and genomics. 2013. Zuo Xiao-Cong, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A and ABCB1 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of tacrolimus and its metabolites (M-I and M-III). Transplantation. 2013. Yoon Se-Hee, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population pharmacokinetics and pharmacogenetics of once daily prolonged-release formulation of tacrolimus in pediatric and adolescent kidney transplant recipients. European journal of clinical pharmacology. 2013. Zhao Wei, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Prediction of the tacrolimus population pharmacokinetic parameters according to CYP3A5 genotype and clinical factors using NONMEM in adult kidney transplant recipients. European journal of clinical pharmacology. 2013. Han Nayoung, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene. 2013. Shi Yunying, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Combined approach with therapeutic drug monitoring and pharmacogenomics in renal transplant recipients. Indian journal of nephrology. 2013. Manvizhi S, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
CYP3A4*22: promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of Cytochrome P450 (CYP) 3A4*1G Polymorphism on the Pharmacokinetics of Tacrolimus, Probability of Acute Cellular Rejection, and mRNA Expression Level of CYP3A5 Rather than CYP3A4 in Living-Donor Liver Transplant Patients. Biological & pharmaceutical bulletin. 2013. Uesugi Miwa, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Impact of CYP3A5 genetic polymorphism on cross-reactivity in tacrolimus chemiluminescent immunoassay in kidney transplant recipients. Clinica chimica acta; international journal of clinical chemistry. 2012. Hirano Kumi, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Novel single nucleotide polymorphisms in interleukin 6 affect tacrolimus metabolism in liver transplant patients. PloS one. 2013. Chen Dawei, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The impact of CYP3A5 and MDR1 polymorphisms on tacrolimus dosage requirements and trough concentrations in pediatric renal transplant recipients. Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia. 2013. Shilbayeh Sireen, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Therapeutic drug monitoring. 2012. Ro Han, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genetic differences in Native Americans and tacrolimus dosing after kidney transplantation. Transplantation proceedings. 2013. Chakkera H A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Increased Hospital Stay and Allograft Disfunction in Renal Transplanted Patients with CYP2C19 AA Variant in SNP RS4244285. Drug metabolism and disposition: the biological fate of chemicals. 2012. Boso Virginia, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenetics and genomics. 2012. Hu Lei, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation. Transplantation. 2012. Niioka Takenori, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of CYP3A5, CYP3A4, and ABCB1 genotypes as determinants of tacrolimus dose and clinical outcomes after heart transplantation. Transplantation proceedings. 2012. Díaz-Molina B, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A51/3 polymorphism on blood pressure in renal transplant recipients. Transplantation proceedings. 2012. Torio A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Identification of factors affecting tacrolimus level and 5-year clinical outcome in kidney transplant patients. Basic & clinical pharmacology & toxicology. 2012. Kim In-Wha, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Measurement and Compartmental Modeling of the Effect of CYP3A5 Gene Variation on Systemic and Intrarenal Tacrolimus Disposition. Clinical pharmacology and therapeutics. 2012. Zheng S, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Combinational effect of intestinal and hepatic CYP3A5 genotypes on tacrolimus pharmacokinetics in recipients of living donor liver transplantation. Transplantation. 2012. Ji Eunhee, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
In Vivo CYP3A4 Activity, CYP3A5 Genotype, and Hematocrit Predict Tacrolimus Dose Requirements and Clearance in Renal Transplant Patients. Clinical pharmacology and therapeutics. 2012. de Jonge H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacokinetics of Tacrolimus During Pregnancy. Therapeutic drug monitoring. 2012. Zheng Songmao, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenetics and genomics. 2012. Terrazzino Salvatore, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available VIP No VIP available
PharmGKB summary: very important pharmacogene information for CYP3A5. Pharmacogenetics and genomics. 2012. Lamba Jatinder, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Validation of tacrolimus equation to predict troughs using genetic and clinical factors. Pharmacogenomics. 2012. Passey Chaitali, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
The Dual Role of Pharmacogenetics in HIV Treatment: Mutations and Polymorphisms Regulating Antiretroviral Drug Resistance and Disposition. Pharmacological reviews. 2012. Michaud Veronique, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Frequencies of CYP3A5*1/*3 variants in a Moroccan population and effect on tacrolimus daily dose requirements in renal transplant patients. Genetic testing and molecular biomarkers. 2012. Elmachad Mustapha, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 polymorphism in Mexican renal transplant recipients and its association with tacrolimus dosing. Archives of medical research. 2012. García-Roca Pilar, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Clinical and genetic factors affecting tacrolimus trough levels and drug-related outcomes in Korean kidney transplant recipients. European journal of clinical pharmacology. 2012. Kim In-Wha, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The interactions of age, sex, body mass index, genetics, and steroid weight-based doses on tacrolimus dosing requirement after adult kidney transplantation. European journal of clinical pharmacology. 2012. Stratta P, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Unusual high dose of tacrolimus in liver transplant patient, a case report. International journal of clinical pharmacy. 2012. Provenzani Alessio, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of genetic polymorphisms on tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transplant international : official journal of the European Society for Organ Transplantation. 2012. Gervasini Guillermo, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population pharmacokinetic modelling and design of a Bayesian estimator for therapeutic drug monitoring of tacrolimus in lung transplantation. Clinical pharmacokinetics. 2012. Monchaud Caroline, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Influence of NAT2 polymorphisms on sulfamethoxazole pharmacokinetics in renal transplant recipients. Antimicrobial agents and chemotherapy. 2012. Kagaya Hideaki, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Association between tacrolimus concentration and genetic polymorphisms of CYP3A5 and ABCB1 during the early stage after liver transplant in an Iranian population. Experimental and clinical transplantation : official journal of the Middle East Society for Organ Transplantation. 2012. Rahsaz Marjan, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenetics and genomics. 2012. Birdwell Kelly A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplantation proceedings. 2012. Cho J-H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Dosing equation for tacrolimus using genetic variants and clinical factors. British journal of clinical pharmacology. 2011. Passey Chaitali, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. European journal of clinical pharmacology. 2011. de Wildt Saskia N, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 and ABCB1 gene polymorphisms and other factors on tacrolimus dosing in Caucasian liver and kidney transplant patients. International journal of molecular medicine. 2011. Provenzani Alessio, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2011. Gijsen Violette, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clinical chemistry. 2011. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenetics and genomics. 2011. Tang Hui-Lin, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population Pharmacokinetics and Pharmacogenetics of Tacrolimus in Healthy Chinese Volunteers. Pharmacology. 2011. Xue Ling, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Association of ABCB1, CYP3A4*18B and CYP3A5*3 genotypes with the pharmacokinetics of tacrolimus in healthy Chinese subjects: a population pharmacokinetic analysis. Journal of clinical pharmacy and therapeutics. 2011. Shi X-J, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
In vivo CYP3A activity is significantly lower in cyclosporine-treated as compared with tacrolimus-treated renal allograft recipients. Clinical pharmacology and therapeutics. 2011. de Jonge H, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 and ABCB1 polymorphisms in donor and recipient: impact on Tacrolimus dose requirements and clinical outcome after renal transplantation. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2011. Glowacki François, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenetics of calcineurin inhibitors in Brazilian renal transplant patients. Pharmacogenomics. 2011. Santoro Ana, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The P450 oxidoreductase *28 SNP is associated with low initial tacrolimus exposure and increased dose requirements in CYP3A5-expressing renal recipients. Pharmacogenomics. 2011. de Jonge Hylke, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone marrow transplantation. 2011. Onizuka M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of interleukin-10 gene polymorphisms on tacrolimus dosing requirements in Chinese liver transplant patients during the early posttransplantation period. European journal of clinical pharmacology. 2011. Zhang Xiaoqing, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Tacrolimus dosing in Chinese renal transplant recipients: a population-based pharmacogenetics study. European journal of clinical pharmacology. 2011. Li Liang, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of CYP3A5 polymorphism on tacrolimus maintenance doses and serum levels after renal transplantation: age dependency and pharmacological interaction with steroids. Pediatric transplantation. 2011. Ferraris Jorge R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on the pharmacokinetics of the prolonged-release, once-daily formulation of tacrolimus in stable renal transplant recipients. Clinical pharmacokinetics. 2011. Glowacki François, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of the CYP3A4*1G polymorphism and its combination with CYP3A5 genotypes on tacrolimus pharmacokinetics in renal transplant patients. Pharmacogenomics. 2011. Miura Masatomo, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics and individualized therapy in children: immunosuppressants, antidepressants, anticancer and anti-inflammatory drugs. Pharmacogenomics. 2011. Elie Valery, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
A low-risk ZnT-8 allele (W325) for post-transplantation diabetes mellitus is protective against cyclosporin A-induced impairment of insulin secretion. The pharmacogenomics journal. 2011. Kim I, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 genotype is not related to the intrapatient variability of tacrolimus clearance. Therapeutic drug monitoring. 2011. Pashaee Nilufar, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Pharmacogenetics of tacrolimus after renal transplantation: analysis of polymorphisms in genes encoding 16 drug metabolizing enzymes. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2011. Tavira Beatriz, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Expression of CYP3A5 and P-glycoprotein in renal allografts with histological signs of calcineurin inhibitor nephrotoxicity. Transplantation. 2011. Metalidis Christoph, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Pharmacogenetic determinants for interindividual difference of tacrolimus pharmacokinetics 1 year after renal transplantation. Journal of clinical pharmacy and therapeutics. 2011. Miura M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Differential impact of the CYP3A5*1 and CYP3A5*3 alleles on pre-dose concentrations of two tacrolimus formulations. Pharmacogenetics and genomics. 2011. Wehland Markus, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
ABCB1 Single-Nucleotide Polymorphisms Determine Tacrolimus Response in Patients With Ulcerative Colitis. Clinical pharmacology and therapeutics. 2011. Herrlinger K R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Drug Interactions Between the Immunosuppressant Tacrolimus and the Cholesterol Absorption Inhibitor Ezetimibe in Healthy Volunteers. Clinical pharmacology and therapeutics. 2011. Oswald S, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenomics of the RNA world: structural RNA polymorphisms in drug therapy. Clinical pharmacology and therapeutics. 2011. Sadee W, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
KCNQ1 gene variants and risk of new-onset diabetes in tacrolimus-treated renal-transplanted patients. Clinical transplantation. 2011. Tavira Beatriz, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available VIP No VIP available
Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenetics and genomics. 2011. Hodges Laura M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Seasonal variation in blood drug concentrations and a potential relationship to vitamin D. Drug metabolism and disposition: the biological fate of chemicals. 2011. Lindh Jonatan D, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation. 2011. Jacobson Pamala A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Engraftment syndrome, but not acute GVHD, younger age, CYP3A5 or MDR1 polymorphisms, increases tacrolimus clearance in pediatric hematopoietic SCT. Bone marrow transplantation. 2011. Yanagisawa R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Practical recommendations for pharmacogenomics-based prescription: 2010 ESF-UB Conference on Pharmacogenetics and Pharmacogenomics. Pharmacogenomics. 2011. Becquemont Laurent, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP3A5 genotype of recipients as well as donors on the tacrolimus pharmacokinetics and infectious complications after living-donor liver transplantation for Japanese adult recipients. Annals of transplantation : quarterly of the Polish Transplantation Society. 2011. Muraki Yuichi, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Polymorphisms in CYP3A5*3 and MDR1, and haplotype modulate response to plasma levels of tacrolimus in Chinese renal transplant patients. Annals of transplantation : quarterly of the Polish Transplantation Society. 2011. Wu Ping, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Association between CYP3A5 polymorphisms and blood pressure in kidney transplant recipients receiving calcineurin inhibitors. Clinical and experimental hypertension (New York, N.Y. : 1993). 2011. Ferraresso Mariano, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The role of CYP3A5 genotypes in dose requirements of tacrolimus and everolimus after heart transplantation. Clinical transplantation. 2011. Kniepeiss Daniela, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Successful tacrolimus treatment following renal transplant in a HIV-infected patient with raltegravir previously treated with a protease inhibitor based regimen. Drug metabolism and drug interactions. 2011. Cousins Darren, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 *1 allele: impacts on early acute rejection and graft function in tacrolimus-based renal transplant recipients. Transplantation. 2010. Min Sang-Il, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Pharmacogenetic study of ABCB1 and CYP3A5 genes during the first year following heart transplantation regarding tacrolimus or cyclosporine levels. Transplantation proceedings. 2011. Jordán de Luna C, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetic vs. concentration-controlled optimization of tacrolimus dosing in renal allograft recipients. Clinical pharmacology and therapeutics. 2010. Kuypers D R J. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clinical transplantation. 2010. Yanagimachi Masakatsu, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 and MDR1(ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in Chinese renal transplant recipients. Transplantation proceedings. 2010. Rong G, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Value of CYP3A5 genotyping on determining initial dosages of tacrolimus for Chinese renal transplant recipients. Transplantation proceedings. 2010. Zhang J, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in renal transplant recipients on a new once-daily formulation. Clinical pharmacokinetics. 2010. Benkali Khaled, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Deciphering calcineurin inhibitor nephrotoxicity: a pharmacological approach. Pharmacogenomics. 2010. Pallet Nicolas, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Using genetic and clinical factors to predict tacrolimus dose in renal transplant recipients. Pharmacogenomics. 2010. Wang Ping, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Genetic polymorphisms and individualized tacrolimus dosing. Transplantation proceedings. 2010. López-Montenegro Soria M A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic & clinical pharmacology & toxicology. 2010. Kagaya Hideaki, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients. Therapeutic drug monitoring. 2010. Kuypers Dirk R J, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Prediction of adverse drug reactions using decision tree modeling. Clinical pharmacology and therapeutics. 2010. Hammann F, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of gene polymorphisms on the levels of calcineurin inhibitors in Indian renal transplant recipients. Indian journal of nephrology. 2010. Ashavaid T, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. British journal of clinical pharmacology. 2010. Woillard Jean-Baptiste, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Dosing tacrolimus based on CYP3A5 genotype: will it improve clinical outcome?. Clinical pharmacology and therapeutics. 2010. van Gelder T, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Optimization of initial tacrolimus dose using pharmacogenetic testing. Clinical pharmacology and therapeutics. 2010. Thervet E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Effects of diltiazem on pharmacokinetics of tacrolimus in relation to CYP3A5 genotype status in renal recipients: from retrospective to prospective. The pharmacogenomics journal. 2010. Li J-L, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Use of pharmacogenetics to optimize immunosuppressive therapy. Therapeutic drug monitoring. 2010. Macphee Iain A M. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Tacrolimus nephrotoxicity: beware of the association of diarrhea, drug interaction and pharmacogenetics. Pediatric nephrology (Berlin, Germany). 2010. Leroy Sandrine, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. 2010. Capron Arnaud, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part II. Clinical pharmacokinetics. 2010. Staatz Christine E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
An integrative approach for identifying a metabolic phenotype predictive of individualized pharmacokinetics of tacrolimus. Clinical pharmacology and therapeutics. 2010. Phapale P B, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Association of calpain-10 gene polymorphism and posttransplant diabetes mellitus in kidney transplant patients medicated with tacrolimus. The pharmacogenomics journal. 2010. Kurzawski Mateusz, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clinical pharmacokinetics. 2010. Staatz Christine E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clinical pharmacology and therapeutics. 2010. Picard N, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clinical pharmacology and therapeutics. 2009. Zhao W, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Factors affecting the long-term response to tacrolimus in renal transplant patients: pharmacokinetic and pharmacogenetic approach. International journal of medical sciences. 2010. Katsakiori Paraskevi F, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Frequencies and roles of CYP3A5, CYP3A4 and ABCB1 single nucleotide polymorphisms in Italian teenagers after kidney transplantation. Pharmacological reports : PR. 2010. Turolo Stefano, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics of immunosuppressant polymorphism of CYP3A5 in renal transplant recipients. Transplantation proceedings. 2010. Larriba J, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Donor age and renal P-glycoprotein expression associate with chronic histological damage in renal allografts. Journal of the American Society of Nephrology : JASN. 2009. Naesens Maarten, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
TCF7L2 polymorphism associates with new-onset diabetes after transplantation. Journal of the American Society of Nephrology : JASN. 2009. Ghisdal Lidia, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Increased mycophenolic acid exposure in stable kidney transplant recipients on tacrolimus as compared with those on sirolimus: implications for pharmacokinetics. Clinical pharmacology and therapeutics. 2009. Braun F, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clinical pharmacology and therapeutics. 2009. van Schaik R H N, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of CYP3A5 and CYP3A4 gene polymorphisms on dose requirement of calcineurin inhibitors, cyclosporine and tacrolimus, in renal allograft recipients of North India. Naunyn-Schmiedeberg's archives of pharmacology. 2009. Singh Ranjana, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacogenetics of calcineurin inhibitors in renal transplantation. Transplantation. 2009. Coto Eliecer, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of CYP3A5 genotype on renal allograft recipients treated with tacrolimus. Transplantation proceedings. 2009. Chen J S, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. European journal of clinical pharmacology. 2009. Satoh Shigeru, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Explaining variability in tacrolimus pharmacokinetics to optimize early exposure in adult kidney transplant recipients. Therapeutic drug monitoring. 2009. Press Rogier R, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Tacrolimus concentrations in relation to CYP3A and ABCB1 polymorphisms among solid organ transplant recipients in Korea. Transplantation. 2009. Jun Kyung Ran, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genetic polymorphisms in CYP3A5 and MDR1 genes and their correlations with plasma levels of tacrolimus and cyclosporine in renal transplant recipients. Transplantation proceedings. 2009. Mendes J, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients--a retrospective study. Annals of transplantation : quarterly of the Polish Transplantation Society. 2009. Grenda Ryszard, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The effect of CYP3A5 and ABCB1 single nucleotide polymorphisms on tacrolimus dose requirements in Caucasian liver transplant patients. Annals of transplantation : quarterly of the Polish Transplantation Society. 2009. Provenzani Alessio, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients. Basic & clinical pharmacology & toxicology. 2008. Quteineh Lina, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. Pharmacogenetics and genomics. 2008. Smith Helen E, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Effects of CYP3A5 and MDR1 single nucleotide polymorphisms on drug interactions between tacrolimus and fluconazole in renal allograft recipients. Pharmacogenetics and genomics. 2008. Kuypers Dirk R, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Genetic variation in drug transporters in ethnic populations. Clinical pharmacology and therapeutics. 2008. Cropp C D, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Lack of tacrolimus circadian pharmacokinetics and CYP3A5 pharmacogenetics in the early and maintenance stages in Japanese renal transplant recipients. British journal of clinical pharmacology. 2008. Satoh Shigeru, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. The pharmacogenomics journal. 2008. Woodahl E L, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Impact of CYP3A5 genetic polymorphism on pharmacokinetics of tacrolimus in healthy Japanese subjects. British journal of clinical pharmacology. 2008. Suzuki Yoshiharu, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
No association between single nucleotide polymorphisms and the development of nephrotoxicity after orthotopic heart transplantation. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation. 2008. Klauke Bärbel, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica; the fate of foreign compounds in biological systems. 2008. Zhou S-F. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Significant impact of gene polymorphisms on tacrolimus but not cyclosporine dosing in Asian renal transplant recipients. Transplantation proceedings. 2008. Loh P T, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The effect of CYP3A5 polymorphisms on the pharmacokinetics of tacrolimus in adolescent kidney transplant recipients. Medical science monitor : international medical journal of experimental and clinical research. 2008. Tirelli Silvia, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenetics and genomics. 2008. Fukudo Masahide, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 genotype is not associated with a higher risk of acute rejection in tacrolimus-treated renal transplant recipients. Pharmacogenetics and genomics. 2008. Hesselink Dennis A, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clinical pharmacology and therapeutics. 2007. Kuypers D R J, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Population pharmacokinetics of tacrolimus and CYP3A5, MDR1 and IL-10 polymorphisms in adult liver transplant patients. Journal of clinical pharmacy and therapeutics. 2007. Li D, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
1199G>A and 2677G>T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation. Pharmacogenetics and genomics. 2007. Elens Laure, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. British journal of clinical pharmacology. 2007. Choi Ji H, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Polymorphisms of tumor necrosis factor-alpha, interleukin-10, cytochrome P450 3A5 and ABCB1 in Chinese liver transplant patients treated with immunosuppressant tacrolimus. Clinica chimica acta; international journal of clinical chemistry. 2007. Li Dan, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Tacrolimus pharmacokinetics and pharmacogenetics: influence of adenosine triphosphate-binding cassette B1 (ABCB1) and cytochrome (CYP) 3A polymorphisms. Fundamental & clinical pharmacology. 2007. Op den Buijsch Robert A M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Cytochrome P450 3A polymorphisms and immunosuppressive drugs: an update. Pharmacogenomics. 2007. Anglicheau Dany, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatric transplantation. 2007. Ferraresso Mariano, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clinical pharmacology and therapeutics. 2007. Renders L, et al. PubMed
No Dosing Guideline available No Drug Label available CA No Variant Annotation available No VIP available No VIP available
Influence of ABCB1 C3435T polymorphism on the pharmacokinetics of lansoprazole and gastroesophageal symptoms in Japanese renal transplant recipients classified as CYP2C19 extensive metabolizers and treated with tacrolimus. International journal of clinical pharmacology and therapeutics. 2006. Miura M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
CYP3A5 and ABCB1 polymorphisms and tacrolimus pharmacokinetics in renal transplant candidates: guidelines from an experimental study. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2006. Haufroid V, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clinical pharmacology and therapeutics. 2006. Fukudo Masahide, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Cyclosporin A, tacrolimus and sirolimus are potent inhibitors of the human breast cancer resistance protein (ABCG2) and reverse resistance to mitoxantrone and topotecan. Cancer chemotherapy and pharmacology. 2006. Gupta Anshul, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenetics and genomics. 2006. Roy Jean Nicholas, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug metabolism and disposition: the biological fate of chemicals. 2006. Hirano Masaru, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of different allelic variants of the CYP3A and ABCB1 genes on the tacrolimus pharmacokinetic profile of Chinese renal transplant recipients. Pharmacogenomics. 2006. Cheung Chi Yuen, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug metabolism and disposition: the biological fate of chemicals. 2006. Dai Yang, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Tacrolimus dose requirement in relation to donor and recipient ABCB1 and CYP3A5 gene polymorphisms in Chinese liver transplant patients. Liver transplantation : official publication of the American Association for the Study of Liver Diseases and the International Liver Transplantation Society. 2006. Wei-lin Wang, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenetics and genomics. 2006. Uesugi Miwa, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Intestinal MDR1/ABCB1 level at surgery as a risk factor of acute cellular rejection in living-donor liver transplant patients. Clinical pharmacology and therapeutics. 2006. Masuda Satohiro, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. Transplantation. 2006. Yu Songfeng, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2006. Mourad Michel, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of CYP3A5 and MDR1 polymorphisms on tacrolimus concentration in the early stage after renal transplantation. Clinical transplantation. 2005. Zhang Xin, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Sirolimus and tacrolimus trough concentrations and dose requirements after kidney transplantation in relation to CYP3A5 and MDR1 polymorphisms and steroids. Transplantation. 2005. Mourad Michel, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Impact of CYP3A5 and MDR1(ABCB1) C3435T polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation proceedings. 2005. Tada H, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Sequential analysis of tacrolimus dosing in adult lung transplant patients with ABCB1 haplotypes. Journal of clinical pharmacology. 2005. Zheng Hongxia, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. Transplantation. 2005. Macphee Iain A M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Genetic polymorphisms of CYP3A5 genes and concentration of the cyclosporine and tacrolimus. Transplantation proceedings. 2005. Zhao Y, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. British journal of clinical pharmacology. 2004. Mai Ingrid, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 2004. Tsuchiya Norihiko, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Tacrolimus therapy in rheumatoid arthritis. Rheumatology (Oxford, England). 2004. McCarey D W, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
CYP3A5*1-carrying graft liver reduces the concentration/oral dose ratio of tacrolimus in recipients of living-donor liver transplantation. Pharmacogenetics. 2004. Goto Maki, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2004. MacPhee Iain A M, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics. 2004. Haufroid Vincent, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Pharmacology of calcineurin antagonists. Transplantation proceedings. 2004. Kapturczak M H, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. Journal of clinical pharmacology. 2004. Zheng HongXia, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
ABCB1 C3435T and G2677T/A polymorphism decreased the risk for steroid-induced osteonecrosis of the femoral head after kidney transplantation. Pharmacogenetics. 2003. Asano Takeshi, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003. Thervet Eric, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clinical pharmacology and therapeutics. 2003. Hesselink Dennis A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available VA No VIP available No VIP available
Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2003. Zheng HongXia, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Atopic dermatitis management with tacrolimus ointment (Protopic). The Journal of dermatological treatment. 2003. Kapp A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation. 2002. Macphee Iain A M, et al. PubMed
No Dosing Guideline available No Drug Label available CA VA No VIP available No VIP available
The MDR1 polymorphisms at exons 21 and 26 predict steroid weaning in pediatric heart transplant patients. Human immunology. 2002. Zheng HongXia, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
C3435T polymorphism in the MDR1 gene affects the enterocyte expression level of CYP3A4 rather than Pgp in recipients of living-donor liver transplantation. Pharmacogenetics. 2002. Goto Maki, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature. 1997. Wolfe S A, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Therapeutic drug monitoring. 1995. Thomson A W, et al. PubMed
No Dosing Guideline available No Drug Label available No Clinical Annotation available No Variant Annotation available No VIP available No VIP available
FK-506, a novel immunosuppressant isolated from a Streptomyces. II. Immunosuppressive effect of FK-506 in vitro. The Journal of antibiotics. 1987. Kino T, et al. PubMed

LinkOuts

Web Resource:
Wikipedia
National Drug Code Directory:
0469-0607-73
DrugBank:
DB00864
PDB:
FK5
ChEBI:
61049
KEGG Compound:
C01375
PubChem Compound:
445643
PubChem Substance:
46506004
Drugs Product Database (DPD):
2243144
HET:
FK5
Therapeutic Targets Database:
DAP000162
FDA Drug Label at DailyMed:
7f667de1-9dfa-4bd6-8ba0-15ee2d78873b

Clinical Trials

These are trials that mention tacrolimus and are related to either pharmacogenetics or pharmacogenomics.

No trials found.

Common Searches

Search PubMed
Search Medline Plus
Search PubChem
Search CTD

Sources for PharmGKB drug information: DrugBank, PubChem.