Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes by Gold Allison B, Lerman Caryn in Human genetics (2012). PubMed

Abstract

Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the beta2 and alpha5/alpha3/beta4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene-gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.

[ hide abstract ]

Discussed In Paper

Related In Paper

Variant Annotations

None.